These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
146 related articles for article (PubMed ID: 16851229)
1. Mechanism and kinetics of the catalytic CO-H2 reaction: An approach by chemical transients and surface relaxation spectroscopy. Frennet A; Visart de Bocarmé T; Bastin JM; Kruse N J Phys Chem B; 2005 Feb; 109(6):2350-9. PubMed ID: 16851229 [TBL] [Abstract][Full Text] [Related]
2. Hydrocarbon chain lengthening in catalytic CO hydrogenation: evidence for a CO-insertion mechanism. Schweicher J; Bundhoo A; Kruse N J Am Chem Soc; 2012 Oct; 134(39):16135-8. PubMed ID: 22992066 [TBL] [Abstract][Full Text] [Related]
3. Monitoring in situ catalytically active states of Ru catalysts for different methanol oxidation pathways. Blume R; Hävecker M; Zafeiratos S; Teschner D; Vass E; Schnörch P; Knop-Gericke A; Schlögl R; Lizzit S; Dudin P; Barinov A; Kiskinova M Phys Chem Chem Phys; 2007 Jul; 9(27):3648-57. PubMed ID: 17612729 [TBL] [Abstract][Full Text] [Related]
4. Temperature-programmed hydrogenation (TPH) and in situ Mössbauer spectroscopy studies of carbonaceous species on silica-supported iron Fischer-Tropsch catalysts. Xu J; Bartholomew CH J Phys Chem B; 2005 Feb; 109(6):2392-403. PubMed ID: 16851234 [TBL] [Abstract][Full Text] [Related]
5. Gold catalysts for pure hydrogen production in the water-gas shift reaction: activity, structure and reaction mechanism. Burch R Phys Chem Chem Phys; 2006 Dec; 8(47):5483-500. PubMed ID: 17136264 [TBL] [Abstract][Full Text] [Related]
6. Local reaction rates and surface diffusion on nanolithographically prepared model catalysts: experiments and simulations. Laurin M; Johánek V; Grant AW; Kasemo B; Libuda J; Freund HJ J Chem Phys; 2005 Feb; 122(8):84713. PubMed ID: 15836083 [TBL] [Abstract][Full Text] [Related]
7. State of supported rhodium nanoparticles for methane catalytic partial oxidation (CPO): FT-IR studies. Finocchio E; Busca G; Forzatti P; Groppi G; Beretta A Langmuir; 2007 Sep; 23(20):10419-28. PubMed ID: 17718528 [TBL] [Abstract][Full Text] [Related]
8. Field emission techniques for studying surface reactions: applying them to NO-H2 interaction with Pd tips. Visart de Bocarmé T; Kruse N Ultramicroscopy; 2011 May; 111(6):376-80. PubMed ID: 21168273 [TBL] [Abstract][Full Text] [Related]
9. Complementary structure sensitive and insensitive catalytic relationships. Van Santen RA Acc Chem Res; 2009 Jan; 42(1):57-66. PubMed ID: 18986176 [TBL] [Abstract][Full Text] [Related]
10. Spatially resolved observation of crystal-face-dependent catalysis by single turnover counting. Roeffaers MB; Sels BF; Uji-I H; De Schryver FC; Jacobs PA; De Vos DE; Hofkens J Nature; 2006 Feb; 439(7076):572-5. PubMed ID: 16452976 [TBL] [Abstract][Full Text] [Related]
11. In situ ATR-IR spectroscopic and reaction kinetics studies of water-gas shift and methanol reforming on Pt/Al2O3 catalysts in vapor and liquid phases. He R; Davda RR; Dumesic JA J Phys Chem B; 2005 Feb; 109(7):2810-20. PubMed ID: 16851292 [TBL] [Abstract][Full Text] [Related]
12. Stability of formate species on beta-Ga2O3. Calatayud M; Collins SE; Baltanás MA; Bonivardi AL Phys Chem Chem Phys; 2009 Mar; 11(9):1397-405. PubMed ID: 19224041 [TBL] [Abstract][Full Text] [Related]
13. Surface science investigations of oxidative chemistry on gold. Gong J; Mullins CB Acc Chem Res; 2009 Aug; 42(8):1063-73. PubMed ID: 19588952 [TBL] [Abstract][Full Text] [Related]
14. In situ Raman and pulse reaction study on the partial oxidation of methane to synthesis gas over a Pt/Al2O3 catalyst. Wang ML; Zheng HZ; Li JM; Weng WZ; Xia WS; Huang CJ; Wan HL Chem Asian J; 2011 Feb; 6(2):580-9. PubMed ID: 21254432 [TBL] [Abstract][Full Text] [Related]
15. Catalytic partial oxidation of methane to synthesis gas over a ruthenium catalyst: the role of the oxidation state. Rabe S; Nachtegaal M; Vogel F Phys Chem Chem Phys; 2007 Mar; 9(12):1461-8. PubMed ID: 17356753 [TBL] [Abstract][Full Text] [Related]
16. Restructuring and redispersion of silver on SiO2 under oxidizing/reducing atmospheres and its activity toward CO oxidation. Qu Z; Huang W; Cheng M; Bao X J Phys Chem B; 2005 Aug; 109(33):15842-8. PubMed ID: 16853013 [TBL] [Abstract][Full Text] [Related]
17. Monitoring supported-nanocluster heterogeneous catalyst formation: product and kinetic evidence for a 2-step, nucleation and autocatalytic growth mechanism of Pt(0)n formation from H2PtCl6 on Al2O3 or TiO2. Mondloch JE; Yan X; Finke RG J Am Chem Soc; 2009 May; 131(18):6389-96. PubMed ID: 19379011 [TBL] [Abstract][Full Text] [Related]
18. Transient and steady state CO oxidation kinetics on nanolithographically prepared supported Pd model catalysts: experiments and simulations. Laurin M; Johánek V; Grant AW; Kasemo B; Libuda J; Freund HJ J Chem Phys; 2005 Aug; 123(5):054701. PubMed ID: 16108679 [TBL] [Abstract][Full Text] [Related]
19. Application of in-situ attenuated total reflection-Fourier transform infrared spectroscopy for the understanding of complex reaction mechanism and kinetics: formic acid oxidation on a Pt film electrode at elevated temperatures. Chen YX; Ye S; Heinen M; Jusys Z; Osawa M; Behm RJ J Phys Chem B; 2006 May; 110(19):9534-44. PubMed ID: 16686500 [TBL] [Abstract][Full Text] [Related]
20. Dynamics of surface catalyzed reactions; the roles of surface defects, surface diffusion, and hot electrons. Somorjai GA; Bratlie KM; Montano MO; Park JY J Phys Chem B; 2006 Oct; 110(40):20014-22. PubMed ID: 17020389 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]