These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

186 related articles for article (PubMed ID: 16851267)

  • 1. Electron and hole transfer from indium phosphide quantum dots.
    Blackburn JL; Selmarten DC; Ellingson RJ; Jones M; Micic O; Nozik AJ
    J Phys Chem B; 2005 Feb; 109(7):2625-31. PubMed ID: 16851267
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Charge carrier resolved relaxation of the first excitonic state in CdSe quantum dots probed with near-infrared transient absorption spectroscopy.
    McArthur EA; Morris-Cohen AJ; Knowles KE; Weiss EA
    J Phys Chem B; 2010 Nov; 114(45):14514-20. PubMed ID: 20507144
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Blinking photoluminescence properties of single TiO2 nanodiscs: interfacial electron transfer dynamics.
    Jeon KS; Oh SD; Suh YD; Yoshikawa H; Masuhara H; Yoon M
    Phys Chem Chem Phys; 2009 Jan; 11(3):534-42. PubMed ID: 19283271
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Symmetric band structures and asymmetric ultrafast electron and hole relaxations in silicon and germanium quantum dots: time-domain ab initio simulation.
    Hyeon-Deuk K; Madrid AB; Prezhdo OV
    Dalton Trans; 2009 Dec; (45):10069-77. PubMed ID: 19904435
    [TBL] [Abstract][Full Text] [Related]  

  • 5. [Effect of hole transporting materials on photoluminescence of CdSe core/shell quantum dots].
    Qu YQ; Zhang QB; Jing PT; Sun YJ; Zeng QH; Zhang YL; Kong XG
    Guang Pu Xue Yu Guang Pu Fen Xi; 2009 Dec; 29(12):3204-7. PubMed ID: 20210132
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The effects of staggered bandgap in the InP/CdSe and CdSe/InP core/shell quantum dots.
    Kim S; Park J; Kim S; Jung W; Sung J; Kim SW
    J Colloid Interface Sci; 2010 Jun; 346(2):347-51. PubMed ID: 20381813
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quenching of semiconductor quantum dot photoluminescence by a pi-conjugated polymer.
    Selmarten D; Jones M; Rumbles G; Yu P; Nedeljkovic J; Shaheen S
    J Phys Chem B; 2005 Aug; 109(33):15927-32. PubMed ID: 16853021
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Use of surface-modified CdTe quantum dots as fluorescent probes in sensing mercury (II).
    Xia YS; Zhu CQ
    Talanta; 2008 Mar; 75(1):215-21. PubMed ID: 18371870
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electron injection from colloidal PbS quantum dots into titanium dioxide nanoparticles.
    Hyun BR; Zhong YW; Bartnik AC; Sun L; Abruña HD; Wise FW; Goodreau JD; Matthews JR; Leslie TM; Borrelli NF
    ACS Nano; 2008 Nov; 2(11):2206-12. PubMed ID: 19206384
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Tuning Hole and Electron Transfer from Photoexcited CdSe Quantum Dots to Phenol Derivatives: Effect of Electron-Donating and -Withdrawing Moieties.
    Debnath T; Sebastian D; Maiti S; Ghosh HN
    Chemistry; 2017 May; 23(30):7306-7314. PubMed ID: 28345273
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Spectroscopic properties of colloidal indium phosphide quantum wires.
    Wang F; Yu H; Li J; Hang Q; Zemlyanov D; Gibbons PC; Wang LW; Janes DB; Buhro WE
    J Am Chem Soc; 2007 Nov; 129(46):14327-35. PubMed ID: 17967012
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Photocharging Artifacts in Measurements of Electron Transfer in Quantum-Dot-Sensitized Mesoporous Titania Films.
    Makarov NS; McDaniel H; Fuke N; Robel I; Klimov VI
    J Phys Chem Lett; 2014 Jan; 5(1):111-8. PubMed ID: 26276189
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Langmuir-Blodgett monolayers of colloidal lead chalcogenide quantum dots: morphology and photoluminescence.
    Justo Y; Moreels I; Lambert K; Hens Z
    Nanotechnology; 2010 Jul; 21(29):295606. PubMed ID: 20601759
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hole transfer from single quantum dots.
    Song N; Zhu H; Jin S; Lian T
    ACS Nano; 2011 Nov; 5(11):8750-9. PubMed ID: 21962001
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Interfacial charge separation and recombination in InP and quasi-type II InP/CdS core/shell quantum dot-molecular acceptor complexes.
    Wu K; Song N; Liu Z; Zhu H; Rodríguez-Córdoba W; Lian T
    J Phys Chem A; 2013 Aug; 117(32):7561-70. PubMed ID: 23639000
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Measuring electron and hole transfer in core/shell nanoheterostructures.
    Chuang CH; Doane TL; Lo SS; Scholes GD; Burda C
    ACS Nano; 2011 Jul; 5(7):6016-24. PubMed ID: 21671650
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Excited-state relaxation in PbSe quantum dots.
    An JM; Califano M; Franceschetti A; Zunger A
    J Chem Phys; 2008 Apr; 128(16):164720. PubMed ID: 18447492
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Surface passivation extends single and biexciton lifetimes of InP quantum dots.
    Yang W; Yang Y; Kaledin AL; He S; Jin T; McBride JR; Lian T
    Chem Sci; 2020 Jun; 11(22):5779-5789. PubMed ID: 32832054
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Growth of InP nanostructures via reaction of indium droplets with phosphide ions: synthesis of InP quantum rods and InP-TiO2 composites.
    Nedeljković JM; Mićić OI; Ahrenkiel SP; Miedaner A; Nozik AJ
    J Am Chem Soc; 2004 Mar; 126(8):2632-9. PubMed ID: 14982473
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Controlled Photoinduced Electron Transfer from InP/ZnS Quantum Dots through Cu Doping: A New Prototype for the Visible-Light Photocatalytic Hydrogen Evolution Reaction.
    Bang J; Das S; Yu EJ; Kim K; Lim H; Kim S; Hong JW
    Nano Lett; 2020 Sep; 20(9):6263-6271. PubMed ID: 32813529
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.