These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
284 related articles for article (PubMed ID: 16851270)
1. Synthesis, characterization, and stability of Fe-MCM-41 for production of carbon nanotubes by acetylene pyrolysis. Amama PB; Lim S; Ciuparu D; Yang Y; Pfefferle L; Haller GL J Phys Chem B; 2005 Feb; 109(7):2645-56. PubMed ID: 16851270 [TBL] [Abstract][Full Text] [Related]
2. Synthesis of carbon nanotubes using mesoporous Fe-MCM-41 catalysts. Ko JR; Ahn WS J Nanosci Nanotechnol; 2006 Nov; 6(11):3442-5. PubMed ID: 17252785 [TBL] [Abstract][Full Text] [Related]
3. Synthesis and characterization of highly ordered Ni-MCM-41 mesoporous molecular sieves. Yang Y; Lim S; Du G; Chen Y; Ciuparu D; Haller GL J Phys Chem B; 2005 Jul; 109(27):13237-46. PubMed ID: 16852651 [TBL] [Abstract][Full Text] [Related]
4. Synthesis of lanthanum-doped MCM-48 molecular sieves and its catalytic performance for the oxidation of styrene. Zhan W; Guo Y; Wang Y; Liu X; Guo Y; Wang Y; Zhang Z; Lu G J Phys Chem B; 2007 Oct; 111(42):12103-10. PubMed ID: 17914798 [TBL] [Abstract][Full Text] [Related]
5. X-ray absorption spectroscopic investigation of partially reduced cobalt species in Co-MCM-41 catalysts during synthesis of single-wall carbon nanotubes. Ciuparu D; Haider P; Fernandez-García M; Chen Y; Lim S; Haller GL; Pfefferle L J Phys Chem B; 2005 Sep; 109(34):16332-9. PubMed ID: 16853076 [TBL] [Abstract][Full Text] [Related]
6. Synthesis of MCM-41 from coal fly ash by a green approach: influence of synthesis pH. Hui KS; Chao CY J Hazard Mater; 2006 Sep; 137(2):1135-48. PubMed ID: 16647813 [TBL] [Abstract][Full Text] [Related]
7. Catalytic activity of MCM-48-, SBA-15-, MCF-, and MSU-type mesoporous silicas modified with Fe3+ species in the oxidative dehydrogenation of ethylbenzene in the presence of N2O. Kuśtrowski P; Chmielarz L; Surman J; Bidzińska E; Dziembaj R; Cool P; Vansant EF J Phys Chem A; 2005 Nov; 109(43):9808-15. PubMed ID: 16833294 [TBL] [Abstract][Full Text] [Related]
9. Surface characterization and catalytic evaluation of copper-promoted Al-MCM-41 toward hydroxylation of phenol. Parida KM; Rath D J Colloid Interface Sci; 2009 Dec; 340(2):209-17. PubMed ID: 19782994 [TBL] [Abstract][Full Text] [Related]
10. Effect of aluminum on the nature of the iron species in Fe-SBA-15. Li Y; Feng Z; Xin H; Fan F; Zhang J; Magusin PC; Hensen EJ; van Santen RA; Yang Q; Li C J Phys Chem B; 2006 Dec; 110(51):26114-21. PubMed ID: 17181265 [TBL] [Abstract][Full Text] [Related]
11. Effects of the Fe-Co interaction on the growth of multiwall carbon nanotubes. Li Z; Dervishi E; Xu Y; Ma X; Saini V; Biris AS; Little R; Biris AR; Lupu D J Chem Phys; 2008 Aug; 129(7):074712. PubMed ID: 19044797 [TBL] [Abstract][Full Text] [Related]
12. CVD growth of single-walled carbon nanotubes with narrow diameter distribution over Fe/MgO catalyst and their fluorescence spectroscopy. Ago H; Imamura S; Okazaki T; Saito T; Yumura M; Tsuji M J Phys Chem B; 2005 May; 109(20):10035-41. PubMed ID: 16852214 [TBL] [Abstract][Full Text] [Related]
13. Immobilization of palladium in mesoporous silica matrix: preparation, characterization, and its catalytic efficacy in carbon-carbon coupling reactions. Jana S; Dutta B; Bera R; Koner S Inorg Chem; 2008 Jun; 47(12):5512-20. PubMed ID: 18459724 [TBL] [Abstract][Full Text] [Related]
14. [Synthesis and catalytic-isomerization performance of Al-MCM-41 mesoporous sieves]. Guo JW; Li LH; Liu S; Cui YH; Deng ZC; Yu L Guang Pu Xue Yu Guang Pu Fen Xi; 2007 Jul; 27(7):1368-71. PubMed ID: 17944416 [TBL] [Abstract][Full Text] [Related]
15. Fe(III) containing MCM-48 type mesoporous molecular sieves with framework zeolite secondary building units. Sakthivel A; Komura K; Sugi Y J Nanosci Nanotechnol; 2008 Jan; 8(1):400-4. PubMed ID: 18468090 [TBL] [Abstract][Full Text] [Related]
16. [Spectroscopic characterization of structure of cerium incorporated MCM-48 mesoporous molecular sieve]. Jin ZX; Yong GP; Sheng LQ; Tong HW; Su QD; Liu SM Guang Pu Xue Yu Guang Pu Fen Xi; 2006 Mar; 26(3):484-7. PubMed ID: 16830761 [TBL] [Abstract][Full Text] [Related]
17. Catalytic role of Cu sites of Cu/MCM-41 in phenol hydroxylation. Zhang G; Long J; Wang X; Zhang Z; Dai W; Liu P; Li Z; Wu L; Fu X Langmuir; 2010 Jan; 26(2):1362-71. PubMed ID: 19938803 [TBL] [Abstract][Full Text] [Related]
18. Iron-doped carbon aerogels: novel porous substrates for direct growth of carbon nanotubes. Steiner SA; Baumann TF; Kong J; Satcher JH; Dresselhaus MS Langmuir; 2007 Apr; 23(9):5161-6. PubMed ID: 17381146 [TBL] [Abstract][Full Text] [Related]
19. Fe/Co alloys for the catalytic chemical vapor deposition synthesis of single- and double-walled carbon nanotubes (CNTs). 1. The CNT-Fe/Co-MgO system. Coquay P; Peigney A; De Grave E; Flahaut E; Vandenberghe RE; Laurent C J Phys Chem B; 2005 Sep; 109(38):17813-24. PubMed ID: 16853284 [TBL] [Abstract][Full Text] [Related]
20. Spatially and size selective synthesis of Fe-based nanoparticles on ordered mesoporous supports as highly active and stable catalysts for ammonia decomposition. Lu AH; Nitz JJ; Comotti M; Weidenthaler C; Schlichte K; Lehmann CW; Terasaki O; Schüth F J Am Chem Soc; 2010 Oct; 132(40):14152-62. PubMed ID: 20849104 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]