These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
277 related articles for article (PubMed ID: 16851282)
1. Raman mapping and in situ SERS spectroelectrochemical studies of 6-mercaptopurine SAMs on the gold electrode. Yang H; Liu Y; Liu Z; Yang Y; Jiang J; Zhang Z; Shen G; Yu R J Phys Chem B; 2005 Feb; 109(7):2739-44. PubMed ID: 16851282 [TBL] [Abstract][Full Text] [Related]
2. Orientation of 6-mercaptopurine SAMs at the silver electrode as studied by Raman mapping and in situ SERS. Chu H; Yang H; Huan S; Shen G; Yu R J Phys Chem B; 2006 Mar; 110(11):5490-7. PubMed ID: 16539488 [TBL] [Abstract][Full Text] [Related]
4. Adsorption of 6-mercaptopurine and 6-mercaptopurine-ribosideon silver colloid: a pH-dependent surface-enhanced Raman spectroscopy and density functional theory study. II. 6-mercaptopurine-riboside. Szeghalmi AV; Leopold L; Pînzaru S; Chis V; Silaghi-Dumitrescu I; Schmitt M; Popp J; Kiefer W Biopolymers; 2005 Aug; 78(6):298-310. PubMed ID: 15832317 [TBL] [Abstract][Full Text] [Related]
5. Probing the protein orientation on charged self-assembled monolayers on gold nanohole arrays by SERS. Yu Q; Golden G Langmuir; 2007 Aug; 23(17):8659-62. PubMed ID: 17629308 [TBL] [Abstract][Full Text] [Related]
6. In situ Raman monitoring triazole formation from self-assembled monolayers of 1,4-diethynylbenzene on Ag and Au surfaces via "click" cyclization. Yoo BK; Joo SW J Colloid Interface Sci; 2007 Jul; 311(2):491-6. PubMed ID: 17434180 [TBL] [Abstract][Full Text] [Related]
7. Voltammetric and surface-enhanced resonance Raman spectroscopic characterization of cytochrome C adsorbed on a 4-mercaptopyridine monolayer on silver electrodes. Millo D; Bonifacio A; Ranieri A; Borsari M; Gooijer C; van der Zwan G Langmuir; 2007 Apr; 23(8):4340-5. PubMed ID: 17341099 [TBL] [Abstract][Full Text] [Related]
8. Optimizing detection sensitivity on surface-enhanced Raman scattering of transition-metal electrodes with confocal Raman microscopy. Ren B; Lin XF; Jiang YX; Cao PG; Xie Y; Huang QJ; Tian ZQ Appl Spectrosc; 2003 Apr; 57(4):419-27. PubMed ID: 14658639 [TBL] [Abstract][Full Text] [Related]
9. SERS studies of the adsorption of guanine derivatives on gold colloidal nanoparticles. Pergolese B; Bonifacio A; Bigotto A Phys Chem Chem Phys; 2005 Oct; 7(20):3610-3. PubMed ID: 16294239 [TBL] [Abstract][Full Text] [Related]
10. Exploring three-dimensional nanosystems with Raman spectroscopy: methylene blue adsorbed on thiol and sulfur monolayers on gold. Tognalli NG; Fainstein A; Vericat C; Vela ME; Salvarezza RC J Phys Chem B; 2006 Jan; 110(1):354-60. PubMed ID: 16471542 [TBL] [Abstract][Full Text] [Related]
11. Hemoglobin on phosphonic acid terminated self-assembled monolayers at a gold electrode: immobilization, direct electrochemistry, and electrocatalysis. Chen Y; Jin B; Guo LR; Yang XJ; Chen W; Gu G; Zheng LM; Xia XH Chemistry; 2008; 14(34):10727-34. PubMed ID: 18942683 [TBL] [Abstract][Full Text] [Related]
12. Raman spectroelectrochemical study of electrochemical decomposition of poly(neutral red) at a gold electrode. Mazeikiene R; Niaura G; Malinauskas A J Colloid Interface Sci; 2009 Aug; 336(1):195-9. PubMed ID: 19446828 [TBL] [Abstract][Full Text] [Related]
13. Surface-enhanced Raman spectroscopy using gold-core platinum-shell nanoparticle film electrodes: toward a versatile vibrational strategy for electrochemical interfaces. Li JF; Yang ZL; Ren B; Liu GK; Fang PP; Jiang YX; Wu DY; Tian ZQ Langmuir; 2006 Dec; 22(25):10372-9. PubMed ID: 17129005 [TBL] [Abstract][Full Text] [Related]
14. Time-dependent picture of the charge-transfer contributions to surface enhanced Raman spectroscopy. Lombardi JR; Birke RL J Chem Phys; 2007 Jun; 126(24):244709. PubMed ID: 17614579 [TBL] [Abstract][Full Text] [Related]
15. Potential-dependent characterization of bombesin adsorbed states on roughened Ag, Au, and Cu electrode surfaces at physiological pH. Podstawka E; Niaura G J Phys Chem B; 2009 Aug; 113(31):10974-83. PubMed ID: 19601618 [TBL] [Abstract][Full Text] [Related]
16. Overlayer surface-enhanced Raman spectroscopy for studying the electrodeposition and interfacial chemistry of ultrathin ge on a nanostructured support. Carim AI; Gu J; Maldonado S ACS Nano; 2011 Mar; 5(3):1818-30. PubMed ID: 21355608 [TBL] [Abstract][Full Text] [Related]
17. Electrochemical and spectroscopic investigations of immobilized de novo designed heme proteins on metal electrodes. Albrecht T; Li W; Ulstrup J; Haehnel W; Hildebrandt P Chemphyschem; 2005 May; 6(5):961-70. PubMed ID: 15884083 [TBL] [Abstract][Full Text] [Related]
18. Transfer printing of metal nanoparticles with controllable dimensions, placement, and reproducible surface-enhanced Raman scattering effects. Xue M; Zhang Z; Zhu N; Wang F; Zhao XS; Cao T Langmuir; 2009 Apr; 25(8):4347-51. PubMed ID: 19320428 [TBL] [Abstract][Full Text] [Related]
19. [Surface-enhanced raman spectra studies on roughened Zn electrode in alkaline solutions]. Shen XY; Liu GK; Gu RA; Tian ZQ Guang Pu Xue Yu Guang Pu Fen Xi; 2005 Sep; 25(9):1418-21. PubMed ID: 16379279 [TBL] [Abstract][Full Text] [Related]
20. Clean substrates prepared by chemical adsorption of iodide followed by electrochemical oxidation for surface-enhanced Raman spectroscopic study of cell membrane. Li MD; Cui Y; Gao MX; Luo J; Ren B; Tian ZQ Anal Chem; 2008 Jul; 80(13):5118-25. PubMed ID: 18489182 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]