These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

132 related articles for article (PubMed ID: 16851389)

  • 1. Thermochemical hole burning on a triethylammonium bis-7,7,8,8-tetracyanoquinodimethane charge-transfer complex using single-walled carbon nanotube scanning tunneling microscopy tips.
    Peng H; Chen Z; Tong L; Yu X; Ran C; Liu Z
    J Phys Chem B; 2005 Mar; 109(8):3526-30. PubMed ID: 16851389
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Thermochemical hole burning on a series of N-substituted morpholinium 7,7,8,8-tetracyanoquinodimethane charge-transfer complexes for data storage.
    Ran C; Peng H; Zhou W; Yu X; Liu Z
    J Phys Chem B; 2005 Dec; 109(47):22486-90. PubMed ID: 16853929
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Thermochemical hole burning performance of TCNQ-based charge transfer complexes with different electrical conductivities.
    Zhou W; Lin F; Ren L; Huang X; Ran C; Ding S; Peng H; Liu Z
    Nanotechnology; 2008 Jun; 19(23):235303. PubMed ID: 21825786
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Unipolar p-type single-walled carbon nanotube field-effect transistors using TTF-TCNQ as the contact material.
    Xian X; Yan K; Zhou W; Jiao L; Wu Z; Liu Z
    Nanotechnology; 2009 Dec; 20(50):505204. PubMed ID: 19923654
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Photophysics of individual single-walled carbon nanotubes.
    Carlson LJ; Krauss TD
    Acc Chem Res; 2008 Feb; 41(2):235-43. PubMed ID: 18281946
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nanoassembly of meso-tetraphenylporphines on surfaces of carbon materials: initial steps as studied by molecular mechanics and scanning tunneling microscopy.
    Basiuk VA; Bassiouk M
    J Nanosci Nanotechnol; 2008 Jan; 8(1):259-67. PubMed ID: 18468069
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Single-walled carbon nanotubes of controlled diameter and bundle size and their field emission properties.
    Zhang L; Balzano L; Resasco DE
    J Phys Chem B; 2005 Aug; 109(30):14375-81. PubMed ID: 16852808
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Lateral manipulation of single-walled carbon nanotubes on H-passivated Si(100) surfaces with an ultrahigh-vacuum scanning tunneling microscope.
    Albrecht PM; Lyding JW
    Small; 2007 Jan; 3(1):146-52. PubMed ID: 17294486
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fabrication of carbon nanotube AFM probes using the Langmuir-Blodgett technique.
    Lee JH; Kang WS; Choi BS; Choi SW; Kim JH
    Ultramicroscopy; 2008 Sep; 108(10):1163-7. PubMed ID: 18572322
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Preparation of metal-TCNQ charge-transfer complexes on conducting and insulating surfaces by photocrystallization.
    O'Mullane AP; Fay N; Nafady A; Bond AM
    J Am Chem Soc; 2007 Feb; 129(7):2066-73. PubMed ID: 17256937
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Carbon nanotube scanning tunneling microscopy tips for chemically selective imaging.
    Nishino T; Ito T; Umezawa Y
    Anal Chem; 2002 Aug; 74(16):4275-8. PubMed ID: 12199602
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Mechanisms of single-walled carbon nanotube probe-sample multistability in tapping mode AFM imaging.
    Solares SD; Esplandiu MJ; Goddard WA; Collier CP
    J Phys Chem B; 2005 Jun; 109(23):11493-500. PubMed ID: 16852407
    [TBL] [Abstract][Full Text] [Related]  

  • 13. High-yield synthesis of conductive carbon nanotube tips for multiprobe scanning tunneling microscope.
    Konishi H; Murata Y; Wongwiriyapan W; Kishida M; Tomita K; Motoyoshi K; Honda S; Katayama M; Yoshimoto S; Kubo K; Hobara R; Matsuda I; Hasegawa S; Yoshimura M; Lee JG; Mori H
    Rev Sci Instrum; 2007 Jan; 78(1):013703. PubMed ID: 17503924
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Light-harvesting using high density p-type single wall carbon nanotube/n-type silicon heterojunctions.
    Li Z; Kunets VP; Saini V; Xu Y; Dervishi E; Salamo GJ; Biris AR; Biris AS
    ACS Nano; 2009 Jun; 3(6):1407-14. PubMed ID: 19456166
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Tuning the electrocrystallization parameters of semiconducting Co[TCNQ]2-based materials to yield either single nanowires or crystalline thin films.
    Nafady A; Bond AM; Bilyk A; Harris AR; Bhatt AI; O'Mullane AP; De Marco R
    J Am Chem Soc; 2007 Feb; 129(8):2369-82. PubMed ID: 17263534
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Comparative study on different carbon nanotube materials in terms of transparent conductive coatings.
    Li Z; Kandel HR; Dervishi E; Saini V; Xu Y; Biris AR; Lupu D; Salamo GJ; Biris AS
    Langmuir; 2008 Mar; 24(6):2655-62. PubMed ID: 18251555
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nanographenes as active components of single-molecule electronics and how a scanning tunneling microscope puts them to work.
    Müllen K; Rabe JP
    Acc Chem Res; 2008 Apr; 41(4):511-20. PubMed ID: 18410086
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of temperature on the capacitance of carbon nanotube supercapacitors.
    Masarapu C; Zeng HF; Hung KH; Wei B
    ACS Nano; 2009 Aug; 3(8):2199-206. PubMed ID: 19583250
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Functional molecules from single wall carbon nanotubes. Photoinduced solubility of short single wall carbon nanotube residues by covalent anchoring of 2,4,6-triarylpyrylium units.
    Alvaro M; Aprile C; Ferrer B; Garcia H
    J Am Chem Soc; 2007 May; 129(17):5647-55. PubMed ID: 17411044
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Preparation and photochemistry of single wall carbon nanotubes having covalently anchored viologen units.
    Alvaro M; Aprile C; Atienzar P; Garcia H
    J Phys Chem B; 2005 Apr; 109(16):7692-7. PubMed ID: 16851893
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.