These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

641 related articles for article (PubMed ID: 16851479)

  • 41. The build-up of polyelectrolyte multilayers of microfibrillated cellulose and cationic polyelectrolytes.
    Wågberg L; Decher G; Norgren M; Lindström T; Ankerfors M; Axnäs K
    Langmuir; 2008 Feb; 24(3):784-95. PubMed ID: 18186655
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Dynamic adsorption of monoclonal antibody layers on hydrophilic silica surface: a combined study by spectroscopic ellipsometry and AFM.
    Wang X; Wang Y; Xu H; Shan H; Lu JR
    J Colloid Interface Sci; 2008 Jul; 323(1):18-25. PubMed ID: 18452935
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Silica nanotubes for lysozyme immobilization.
    Ding HM; Shao L; Liu RJ; Xiao QG; Chen JF
    J Colloid Interface Sci; 2005 Oct; 290(1):102-6. PubMed ID: 15946670
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Thin adsorbed films of a strong cationic polyelectrolyte on silica substrates.
    Popa I; Cahill BP; Maroni P; Papastavrou G; Borkovec M
    J Colloid Interface Sci; 2007 May; 309(1):28-35. PubMed ID: 17303152
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Adsorption of poly(ethylene glycol)-modified lysozyme to silica.
    Daly SM; Przybycien TM; Tilton RD
    Langmuir; 2005 Feb; 21(4):1328-37. PubMed ID: 15697278
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Counterion condensation and shape within Poisson-Boltzmann theory.
    Lamm G; Pack GR
    Biopolymers; 2010 Jul; 93(7):619-39. PubMed ID: 20213767
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Mapping the surface (hydr)oxo-groups of titanium oxide and its interface with an aqueous solution: the state of the art and a new approach.
    Panagiotou GD; Petsi T; Bourikas K; Garoufalis CS; Tsevis A; Spanos N; Kordulis C; Lycourghiotis A
    Adv Colloid Interface Sci; 2008 Oct; 142(1-2):20-42. PubMed ID: 18511015
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Adsorption of bilayers and multilayers of cationic and anionic co-polymers of acrylamide on silicon oxide.
    Wågberg L; Pettersson G; Notley S
    J Colloid Interface Sci; 2004 Jun; 274(2):480-8. PubMed ID: 15144820
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Activity losses among T4 lysozyme charge variants after adsorption to colloidal silica.
    Bower CK; Sananikone S; Bothwell MK; McGuire J
    Biotechnol Bioeng; 1999 Aug; 64(3):373-6. PubMed ID: 10397875
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Equilibrium aspects of polycation adsorption on silica surface: how the adsorbed layer responds to changes in bulk solution.
    Samoshina Y; Nylander T; Shubin V; Bauer R; Eskilsson K
    Langmuir; 2005 Jun; 21(13):5872-81. PubMed ID: 15952836
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Polyelectrolyte-mediated surface interactions.
    Claesson PM; Poptoshev E; Blomberg E; Dedinaite A
    Adv Colloid Interface Sci; 2005 Jun; 114-115():173-87. PubMed ID: 15936291
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Molecular dynamics simulation studies of the transport and adsorption of a charged macromolecule onto a charged adsorbent solid surface immersed in an electrolytic solution.
    Zhang X; Wang JC; Lacki KM; Liapis AI
    J Colloid Interface Sci; 2004 Sep; 277(2):483-98. PubMed ID: 15341862
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Fast adsorption and separation of bovine serum albumin and lysozyme using micrometer-sized macromesoporous silica spheres.
    Zhai Z; Wang Y; Chen Y; Luo G
    J Sep Sci; 2008 Oct; 31(20):3527-36. PubMed ID: 18850635
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Adsorption behavior of lysozyme and Tween 80 at hydrophilic and hydrophobic silica-water interfaces.
    Joshi O; McGuire J
    Appl Biochem Biotechnol; 2009 Feb; 152(2):235-48. PubMed ID: 18478369
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Adsorption of weak polyelectrolytes on charged nanoparticles. Impact of salt valency, pH, and nanoparticle charge density. Monte Carlo simulations.
    Carnal F; Stoll S
    J Phys Chem B; 2011 Oct; 115(42):12007-18. PubMed ID: 21902229
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Formation of dielectric layers and charge regulation in protein adsorption at biomimetic interfaces.
    Hartvig RA; van de Weert M; Ostergaard J; Jorgensen L; Jensen H
    Langmuir; 2012 Jan; 28(3):1804-15. PubMed ID: 22185404
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Yield stress and zeta potential of nanoparticulate silica dispersions under the influence of adsorbed hydrolysis products of metal ions--Cu(II), Al(III) and Th(IV).
    Leong YK
    J Colloid Interface Sci; 2005 Dec; 292(2):557-66. PubMed ID: 16125190
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Diffusioosmosis of electrolyte solutions in a capillary slit with adsorbed polyelectrolyte layers.
    Ma HC; Keh HJ
    J Colloid Interface Sci; 2007 Sep; 313(2):686-96. PubMed ID: 17570383
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Influence of pH and ionic strength on the steric mass-action model parameters around the isoelectric point of protein.
    Shi Q; Zhou Y; Sun Y
    Biotechnol Prog; 2005; 21(2):516-23. PubMed ID: 15801792
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Adsorption of Phosphonates onto the Goethite-Water Interface.
    Nowack B; Stone AT
    J Colloid Interface Sci; 1999 Jun; 214(1):20-30. PubMed ID: 10328892
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 33.