BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

209 related articles for article (PubMed ID: 16851534)

  • 1. Effect of steps on the decomposition of CH3O at PdZn alloy surfaces.
    Chen ZX; Lim KH; Neyman KM; Rösch N
    J Phys Chem B; 2005 Mar; 109(10):4568-74. PubMed ID: 16851534
    [TBL] [Abstract][Full Text] [Related]  

  • 2. CH3O decomposition on PdZn(111), Pd(111), and Cu(111). A theoretical study.
    Chen ZX; Neyman KM; Lim KH; Rösch N
    Langmuir; 2004 Sep; 20(19):8068-77. PubMed ID: 15350074
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microscopic models of PdZn alloy catalysts: structure and reactivity in methanol decomposition.
    Neyman KM; Lim KH; Chen ZX; Moskaleva LV; Bayer A; Reindl A; Borgmann D; Denecke R; Steinrück HP; Rösch N
    Phys Chem Chem Phys; 2007 Jul; 9(27):3470-82. PubMed ID: 17612715
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Comparative theoretical study of formaldehyde decomposition on PdZn, Cu, and Pd surfaces.
    Lim KH; Chen ZX; Neyman KM; Rösch N
    J Phys Chem B; 2006 Aug; 110(30):14890-7. PubMed ID: 16869600
    [TBL] [Abstract][Full Text] [Related]  

  • 5. General rules for predicting where a catalytic reaction should occur on metal surfaces: a density functional theory study of C-H and C-O bond breaking/making on flat, stepped, and kinked metal surfaces.
    Liu ZP; Hu P
    J Am Chem Soc; 2003 Feb; 125(7):1958-67. PubMed ID: 12580623
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Density functional investigations of methanol dehydrogenation on Pd-Zn surface alloy.
    Huang Y; Chen ZX
    Langmuir; 2010 Jul; 26(13):10796-802. PubMed ID: 20420406
    [TBL] [Abstract][Full Text] [Related]  

  • 7. How the C-O bond breaks during methanol decomposition on nanocrystallites of palladium catalysts.
    Yudanov IV; Matveev AV; Neyman KM; Rösch N
    J Am Chem Soc; 2008 Jul; 130(29):9342-52. PubMed ID: 18576628
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Photoelectron spectroscopic and electronic structure studies of CH(2)O bonding and reactivity on ZnO surfaces: steps in the methanol synthesis reaction.
    Jones PM; May JA; Reitz JB; Solomon EI
    Inorg Chem; 2004 May; 43(11):3349-70. PubMed ID: 15154797
    [TBL] [Abstract][Full Text] [Related]  

  • 9. C-O bond scission of methoxide on Pd nanoparticles: a density functional study.
    Yudanov IV; Neyman KM; Rösch N
    Phys Chem Chem Phys; 2006 May; 8(20):2396-401. PubMed ID: 16710487
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Surface composition of materials used as catalysts for methanol steam reforming: a theoretical study.
    Lim KH; Moskaleva LV; Rösch N
    Chemphyschem; 2006 Aug; 7(8):1802-12. PubMed ID: 16807960
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Slab model studies of water adsorption and decomposition on clean and X- (X = C, N and O) contaminated Pd(111) surfaces.
    Cao Y; Chen ZX
    Phys Chem Chem Phys; 2007 Feb; 9(6):739-46. PubMed ID: 17268686
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Density functional study of methanol decomposition on clean and O or OH adsorbed PdZn(111).
    Huang Y; He X; Chen ZX
    J Chem Phys; 2013 May; 138(18):184701. PubMed ID: 23676058
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dehydrogenation of methanol on Pd(100): comparison with the results of Pd(111).
    Jiang R; Guo W; Li M; Lu X; Yuan J; Shan H
    Phys Chem Chem Phys; 2010 Jul; 12(28):7794-803. PubMed ID: 20485803
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Zn modification of the reactivity of Pd(111) toward methanol and formaldehyde.
    Jeroro E; Vohs JM
    J Am Chem Soc; 2008 Aug; 130(31):10199-207. PubMed ID: 18613679
    [TBL] [Abstract][Full Text] [Related]  

  • 15. First-principles study towards the reactivity of the Pd(111) surface with low Zn deposition.
    Huang Y; He X; Chen ZX
    J Chem Phys; 2011 May; 134(18):184702. PubMed ID: 21568524
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Where does methanol lose hydrogen to trigger steam reforming? A revisit of methanol dehydrogenation on the PdZn alloy model obtained from kinetic Monte Carlo simulations.
    Cheng F; Chen ZX
    Phys Chem Chem Phys; 2016 Feb; 18(5):3936-43. PubMed ID: 26771029
    [TBL] [Abstract][Full Text] [Related]  

  • 17. First-principles analysis of the effects of alloying Pd with Ag for the catalytic hydrogenation of acetylene-ethylene mixtures.
    Sheth PA; Neurock M; Smith CM
    J Phys Chem B; 2005 Jun; 109(25):12449-66. PubMed ID: 16852540
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Kinetic mechanism of methanol decomposition on Ni(111) surface: a theoretical study.
    Wang GC; Zhou YH; Morikawa Y; Nakamura J; Cai ZS; Zhao XZ
    J Phys Chem B; 2005 Jun; 109(25):12431-42. PubMed ID: 16852538
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ethanol decomposition on a Pd(110) surface: a density functional theory investigation.
    Guo W; Li M; Lu X; Zhu H; Li Y; Li S; Zhao L
    Dalton Trans; 2013 Feb; 42(6):2309-18. PubMed ID: 23169574
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Competitive paths for methanol decomposition on Pt(111).
    Greeley J; Mavrikakis M
    J Am Chem Soc; 2004 Mar; 126(12):3910-9. PubMed ID: 15038745
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.