BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

212 related articles for article (PubMed ID: 16851589)

  • 21. Growth of silver nanowires from solutions: a cyclic penta-twinned-crystal growth mechanism.
    Zhang SH; Jiang ZY; Xie ZX; Xu X; Huang RB; Zheng LS
    J Phys Chem B; 2005 May; 109(19):9416-21. PubMed ID: 16852129
    [TBL] [Abstract][Full Text] [Related]  

  • 22. One-step synthesis of silver nanoparticles by sonication or heating using amphiphilic block copolymer as templates.
    Lei Z; Zhang L; Wei X
    J Colloid Interface Sci; 2008 Aug; 324(1-2):216-9. PubMed ID: 18511062
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Self-assembly of two- and three-dimensional particle arrays by manipulating the hydrophobicity of silica nanospheres.
    Wang W; Gu B
    J Phys Chem B; 2005 Dec; 109(47):22175-80. PubMed ID: 16853885
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Time-resolved and steady state spectroscopy of polydisperse colloidal silver nanoparticle samples.
    Hu M; Petrova H; Wang X; Hartland GV
    J Phys Chem B; 2005 Aug; 109(30):14426-32. PubMed ID: 16852815
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Synthesis of spherical silver nanoparticles by digestive ripening, stabilization with various agents, and their 3-D and 2-D superlattice formation.
    Smetana AB; Klabunde KJ; Sorensen CM
    J Colloid Interface Sci; 2005 Apr; 284(2):521-6. PubMed ID: 15780291
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Facile fabrication method and characterization of hollow Ag/SiO2 double-shelled spheres.
    Wang Z; Chen X; Chen M; Wu L
    Langmuir; 2009 Jul; 25(13):7646-51. PubMed ID: 19563232
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Preparation, characterization, and surface modification of silver nanoparticles in formamide.
    Sarkar A; Kapoor S; Mukherjee T
    J Phys Chem B; 2005 Apr; 109(16):7698-704. PubMed ID: 16851894
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Surface-guided self-assembly of silver nanoparticles on edges of heterogeneous surfaces.
    Ruan W; Wang C; Ji N; Lu Z; Zhou T; Zhao B; Lombardi JR
    Langmuir; 2008 Aug; 24(16):8417-20. PubMed ID: 18656975
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Gram-scale synthesis of soluble, near-monodisperse gold nanorods and other anisotropic nanoparticles.
    Jana NR
    Small; 2005 Aug; 1(8-9):875-82. PubMed ID: 17193542
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Automated preparation method for colloidal crystal arrays of monodisperse and binary colloid mixtures by contact printing with a pintool plotter.
    Burkert K; Neumann T; Wang J; Jonas U; Knoll W; Ottleben H
    Langmuir; 2007 Mar; 23(6):3478-84. PubMed ID: 17269810
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Urea-based hydrothermal growth, optical and photocatalytic properties of single-crystalline In(OH)3 nanocubes.
    Yan T; Wang X; Long J; Liu P; Fu X; Zhang G; Fu X
    J Colloid Interface Sci; 2008 Sep; 325(2):425-31. PubMed ID: 18555265
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Colloidal crystal microarrays and two-dimensional superstructures: a versatile approach for patterned surface assembly.
    Schaak RE; Cable RE; Leonard BM; Norris BC
    Langmuir; 2004 Aug; 20(17):7293-7. PubMed ID: 15301517
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Transformation of Se@Ag2Se core--shell colloids and nanowires into trigonal se nanorods and uniform spherical Ag2Se colloids.
    Moon GD; Jeong U
    Langmuir; 2009 Jan; 25(1):458-65. PubMed ID: 19067506
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Preparation of silver nanoparticles in water-in-oil AOT reverse micelles.
    Zhang W; Qiao X; Chen J; Wang H
    J Colloid Interface Sci; 2006 Oct; 302(1):370-3. PubMed ID: 16860816
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Formation of silver bromide precipitate of nanoparticles in a single microemulsion utilizing the surfactant counterion.
    Husein M; Rodil E; Vera JH
    J Colloid Interface Sci; 2004 May; 273(2):426-34. PubMed ID: 15082377
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Dissolution-recrystallization mechanism for the conversion of silver nanospheres to triangular nanoplates.
    Yang J; Zhang Q; Lee JY; Too HP
    J Colloid Interface Sci; 2007 Apr; 308(1):157-61. PubMed ID: 17240390
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Coalescence of silver nanoparticles at room temperature: unusual crystal structure transformation and dendrite formation induced by self-assembly.
    Grouchko M; Popov I; Uvarov V; Magdassi S; Kamyshny A
    Langmuir; 2009 Feb; 25(4):2501-3. PubMed ID: 19166274
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Facile organization of colloidal particles into large, perfect one- and two-dimensional arrays by dry manual assembly on patterned substrates.
    Khanh NN; Yoon KB
    J Am Chem Soc; 2009 Oct; 131(40):14228-30. PubMed ID: 19775130
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Silver nanoparticles capped by oleylamine: formation, growth, and self-organization.
    Chen M; Feng YG; Wang X; Li TC; Zhang JY; Qian DJ
    Langmuir; 2007 May; 23(10):5296-304. PubMed ID: 17425348
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Toward monodispersed silver nanoparticles with unusual thermal stability.
    Sun J; Ma D; Zhang H; Liu X; Han X; Bao X; Weinberg G; Pfänder N; Su D
    J Am Chem Soc; 2006 Dec; 128(49):15756-64. PubMed ID: 17147385
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.