These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

213 related articles for article (PubMed ID: 16851589)

  • 41. Controlled synthesis, growth mechanism, and properties of monodisperse CdS colloidal spheres.
    Li XH; Li JX; Li GD; Liu DP; Chen JS
    Chemistry; 2007; 13(31):8754-61. PubMed ID: 17676576
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Synthesis and self-assembly of monodisperse silver-nanocrystal-doped silica particles.
    Chen D; Li L; Liu J; Qi S; Tang F; Ren X; Wu W; Ren J; Zhang L
    J Colloid Interface Sci; 2007 Apr; 308(2):351-5. PubMed ID: 17258758
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Solvent-induced shape evolution of PVP protected spherical silver nanoparticles into triangular nanoplates and nanorods.
    Deivaraj TC; Lala NL; Lee JY
    J Colloid Interface Sci; 2005 Sep; 289(2):402-9. PubMed ID: 16112224
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Colloidal synthesis of pt nanoparticles: on the formation and stability of nanowires.
    Fenske D; Borchert H; Kehres J; Kröger R; Parisi J; Kolny-Olesiak J
    Langmuir; 2008 Aug; 24(16):9011-6. PubMed ID: 18646780
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Biosynthesis, purification and characterization of silver nanoparticles using Escherichia coli.
    Gurunathan S; Kalishwaralal K; Vaidyanathan R; Venkataraman D; Pandian SR; Muniyandi J; Hariharan N; Eom SH
    Colloids Surf B Biointerfaces; 2009 Nov; 74(1):328-35. PubMed ID: 19716685
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Substrates with discretely immobilized silver nanoparticles for ultrasensitive detection of anions in water using surface-enhanced Raman scattering.
    Tan S; Erol M; Sukhishvili S; Du H
    Langmuir; 2008 May; 24(9):4765-71. PubMed ID: 18376892
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Direct synthesis of a macroscopic array of naked Ag nanoparticles.
    Ayyad O; Muñoz-Rojas D; Gómez-Romero P
    Chem Commun (Camb); 2011 Oct; 47(40):11285-7. PubMed ID: 21931892
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Facile synthesis, assembly, and immobilization of ordered arrays of monodisperse magnetic nanoparticles on silicon substrates.
    Leem G; Jamison AC; Zhang S; Litvinov D; Lee TR
    Chem Commun (Camb); 2008 Oct; (40):4989-91. PubMed ID: 18931762
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Synthesis of size-controlled faceted pentagonal silver nanorods with tunable plasmonic properties and self-assembly of these nanorods.
    Pietrobon B; McEachran M; Kitaev V
    ACS Nano; 2009 Jan; 3(1):21-6. PubMed ID: 19206244
    [TBL] [Abstract][Full Text] [Related]  

  • 50. The feasibility of inert colloidal processing of silicon nanoparticles.
    Ostraat ML; Atwater HA; Flagan RC
    J Colloid Interface Sci; 2005 Mar; 283(2):414-21. PubMed ID: 15721913
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Computational model for the formation of uniform silver spheres by aggregation of nanosize precursors.
    Robb DT; Halaciuga I; Privman V; Goia DV
    J Chem Phys; 2008 Nov; 129(18):184705. PubMed ID: 19045421
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Formation and characterization of surfactant stabilized silver nanoparticles: a kinetic study.
    Al-Thabaiti SA; Al-Nowaiser FM; Obaid AY; Al-Youbi AO; Khan Z
    Colloids Surf B Biointerfaces; 2008 Dec; 67(2):230-7. PubMed ID: 18922685
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Synthesis and alignment of silver nanorods and nanowires and the formation of Pt, Pd, and core/shell structures by galvanic exchange directly on surfaces.
    Sławiński GW; Zamborini FP
    Langmuir; 2007 Sep; 23(20):10357-65. PubMed ID: 17760472
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Properties of poly(styrene/alpha-tert-butoxy-omega-vinylbenzyl-polyglycidol) microspheres suspended in water. Effect of sodium chloride and temperature on particle diameters and electrophoretic mobility.
    Basinska T; Slomkowski S; Kazmierski S; Chehimi MM
    Langmuir; 2008 Aug; 24(16):8465-72. PubMed ID: 18630979
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Silver nanocubes formed on ATP-mediated nafion film and a visual method for formaldehyde.
    Zhang Q; Huang CZ; Ling J; Li YF
    J Phys Chem B; 2008 Dec; 112(51):16990-4. PubMed ID: 19367987
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Shape transformation and relaxation dynamics of photoexcited TiO2/Ag nanocomposites.
    Kim MR; Ah CS; Shin D; Lee SK; Lee WI; Jang DJ
    J Nanosci Nanotechnol; 2008 Jun; 8(6):3197-202. PubMed ID: 18681068
    [TBL] [Abstract][Full Text] [Related]  

  • 57. The surface modification of silver nanoparticles by phosphoryl disulfides for improved biocompatibility and intracellular uptake.
    Chung YC; Chen IH; Chen CJ
    Biomaterials; 2008 Apr; 29(12):1807-16. PubMed ID: 18242693
    [TBL] [Abstract][Full Text] [Related]  

  • 58. One-step synthesis of uniform silver nanoparticles capped by saturated decanoate: direct spray printing ink to form metallic silver films.
    Dong TY; Chen WT; Wang CW; Chen CP; Chen CN; Lin MC; Song JM; Chen IG; Kao TH
    Phys Chem Chem Phys; 2009 Aug; 11(29):6269-75. PubMed ID: 19606339
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Surface-enhanced Raman difference between bombesin and its modified analogues on the colloidal and electrochemically roughen silver surfaces.
    Podstawka E; Ozaki Y
    Biopolymers; 2008 Oct; 89(10):807-19. PubMed ID: 18491414
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Simple synthesis and size-dependent surface-enhanced Raman scattering of Ag nanostructures on TiO2 by thermal decomposition of silver nitrate at low temperature.
    Wang RC; Gao YS; Chen SJ
    Nanotechnology; 2009 Sep; 20(37):375605. PubMed ID: 19706939
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.