These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
116 related articles for article (PubMed ID: 16851593)
1. Nanofiltration theory: good co-ion exclusion approximation for single salts. Lefebvre X; Palmeri J J Phys Chem B; 2005 Mar; 109(12):5525-40. PubMed ID: 16851593 [TBL] [Abstract][Full Text] [Related]
2. Evaluation of the steric, electric, and dielectric exclusion model on the basis of salt rejection rate and membrane potential measurements. Lanteri Y; Fievet P; Szymczyk A J Colloid Interface Sci; 2009 Mar; 331(1):148-55. PubMed ID: 19081573 [TBL] [Abstract][Full Text] [Related]
3. Transport of target anions, chromate (Cr (VI)), arsenate (As (V)), and perchlorate (ClO4-), through RO, NF, and UF membranes. Yoon J; Amy G; Yoon Y Water Sci Technol; 2005; 51(6-7):327-34. PubMed ID: 16003993 [TBL] [Abstract][Full Text] [Related]
4. Temperature and concentration effects on electrolyte transport across porous thin-film composite nanofiltration membranes: Pore transport mechanisms and energetics of permeation. Sharma RR; Chellam S J Colloid Interface Sci; 2006 Jun; 298(1):327-40. PubMed ID: 16448663 [TBL] [Abstract][Full Text] [Related]
5. Analysis of ion transport in nanofiltration using phenomenological coefficients and structural characteristics. Bason S; Kaufman Y; Freger V J Phys Chem B; 2010 Mar; 114(10):3510-7. PubMed ID: 20170142 [TBL] [Abstract][Full Text] [Related]
7. Contribution of convection, diffusion and migration to electrolyte transport through nanofiltration membranes. Szymczyk A; Labbez C; Fievet P; Vidonne A; Foissy A; Pagetti J Adv Colloid Interface Sci; 2003 Mar; 103(1):77-94. PubMed ID: 12689761 [TBL] [Abstract][Full Text] [Related]
8. Influence of steric, electric, and dielectric effects on membrane potential. Lanteri Y; Szymczyk A; Fievet P Langmuir; 2008 Aug; 24(15):7955-62. PubMed ID: 18616229 [TBL] [Abstract][Full Text] [Related]
9. Some properties of electrolyte solutions in nanoconfinement revealed by the measurement of transient filtration potential after pressure switch off. Yaroshchuk AE; Boiko YP; Makovetskiy AL Langmuir; 2005 Aug; 21(17):7680-90. PubMed ID: 16089369 [TBL] [Abstract][Full Text] [Related]
10. Application of nanofiltration for the rejection of nickel ions from aqueous solutions and estimation of membrane transport parameters. Murthy ZV; Chaudhari LB J Hazard Mater; 2008 Dec; 160(1):70-7. PubMed ID: 18400379 [TBL] [Abstract][Full Text] [Related]
11. Tangential streaming potential as a tool in modeling of ion transport through nanoporous membranes. Szymczyk A; Fatin-Rouge N; Fievet P J Colloid Interface Sci; 2007 May; 309(2):245-52. PubMed ID: 17321538 [TBL] [Abstract][Full Text] [Related]
12. Free energies of the ion equilibrium partition of KCl into nanofiltration membranes based on transmembrane electrical potential and rejection. Tu CH; Fang YY; Zhu J; Van der Bruggen B; Wang XL Langmuir; 2011 Aug; 27(16):10274-81. PubMed ID: 21728362 [TBL] [Abstract][Full Text] [Related]
13. Effect of temperature on the transport of water and neutral solutes across nanofiltration membranes. Ben Amar N; Saidani H; Deratani A; Palmeri J Langmuir; 2007 Mar; 23(6):2937-52. PubMed ID: 17305374 [TBL] [Abstract][Full Text] [Related]
14. Application of the charge regulation model to transport of ions through hydrophilic membranes: one-dimensional transport model for narrow pores (nanofiltration). de Lint WB; Biesheuvel PM; Verweij H J Colloid Interface Sci; 2002 Jul; 251(1):131-42. PubMed ID: 16290711 [TBL] [Abstract][Full Text] [Related]
15. A new outer boundary formulation and energy corrections for the nonlinear Poisson-Boltzmann equation. Boschitsch AH; Fenley MO J Comput Chem; 2007 Apr; 28(5):909-21. PubMed ID: 17238171 [TBL] [Abstract][Full Text] [Related]
16. Statistical associating fluid theory coupled with restrictive primitive model extended to bivalent ions. SAFT2: 1. Single salt + water solutions. Tan SP; Ji X; Adidharma H; Radosz M J Phys Chem B; 2006 Aug; 110(33):16694-9. PubMed ID: 16913808 [TBL] [Abstract][Full Text] [Related]
17. Ion distributions, exclusion coefficients, and separation factors of electrolytes in a charged cylindrical nanopore: a partially perturbative density functional theory study. Peng B; Yu YX J Chem Phys; 2009 Oct; 131(13):134703. PubMed ID: 19814566 [TBL] [Abstract][Full Text] [Related]
18. Ion-rejection, electrokinetic and electrochemical properties of a nanoporous track-etched membrane and their interpretation by means of space charge model. Yaroshchuk A; Boiko Y; Makovetskiy A Langmuir; 2009 Aug; 25(16):9605-14. PubMed ID: 19585984 [TBL] [Abstract][Full Text] [Related]
19. Lanthanide salts solutions: representation of osmotic coefficients within the binding mean spherical approximation. Ruas A; Moisy P; Simonin JP; Bernard O; Dufrêche JF; Turq P J Phys Chem B; 2005 Mar; 109(11):5243-8. PubMed ID: 16863190 [TBL] [Abstract][Full Text] [Related]
20. Review of the dielectric properties of nanofiltration membranes and verification of the single oriented layer approximation. Oatley DL; Llenas L; Pérez R; Williams PM; Martínez-Lladó X; Rovira M Adv Colloid Interface Sci; 2012 May; 173():1-11. PubMed ID: 22405540 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]