These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

945 related articles for article (PubMed ID: 16851596)

  • 1. Synthesis of highly active sulfate-promoted rutile titania nanoparticles with a response to visible light.
    Yang Q; Xie C; Xu Z; Gao Z; Du Y
    J Phys Chem B; 2005 Mar; 109(12):5554-60. PubMed ID: 16851596
    [TBL] [Abstract][Full Text] [Related]  

  • 2. New route to synthesize highly active nanocrystalline sulfated titania-silica: synergic effects between sulfate species and silica in enhancing the photocatalysis efficiency.
    Xie C; Yang Q; Xu Z; Liu X; Du Y
    J Phys Chem B; 2006 May; 110(17):8587-92. PubMed ID: 16640411
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nanostructured Ti(1-x)S(x)O(2-y)N(y) heterojunctions for efficient visible-light-induced photocatalysis.
    Etacheri V; Seery MK; Hinder SJ; Pillai SC
    Inorg Chem; 2012 Jul; 51(13):7164-73. PubMed ID: 22690945
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Preparation of controllable crystalline titania and study on the photocatalytic properties.
    Yan M; Chen F; Zhang J; Anpo M
    J Phys Chem B; 2005 May; 109(18):8673-8. PubMed ID: 16852027
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis, characterization, and photocatalytic activity of TiO(2-x)N(x) nanocatalyst.
    Wang YQ; Yu XJ; Sun DZ
    J Hazard Mater; 2007 Jun; 144(1-2):328-33. PubMed ID: 17116365
    [TBL] [Abstract][Full Text] [Related]  

  • 6. X-ray absorption spectroscopy of Mn/Co/TiO2 Fischer-Tropsch catalysts: relationships between preparation method, molecular structure, and catalyst performance.
    Morales F; Grandjean D; Mens A; de Groot FM; Weckhuysen BM
    J Phys Chem B; 2006 May; 110(17):8626-39. PubMed ID: 16640417
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of titania structure on the properties of its supported copper oxide catalysts.
    Zhu H; Dong L; Chen Y
    J Colloid Interface Sci; 2011 May; 357(2):497-503. PubMed ID: 21392779
    [TBL] [Abstract][Full Text] [Related]  

  • 8. The structure and catalytic activity of anatase and rutile titania supported manganese oxide catalysts for selective catalytic reduction of NO by NH3.
    Zhuang K; Qiu J; Tang F; Xu B; Fan Y
    Phys Chem Chem Phys; 2011 Mar; 13(10):4463-9. PubMed ID: 21258687
    [TBL] [Abstract][Full Text] [Related]  

  • 9. UV Raman spectroscopic study on TiO2. I. Phase transformation at the surface and in the bulk.
    Zhang J; Li M; Feng Z; Chen J; Li C
    J Phys Chem B; 2006 Jan; 110(2):927-35. PubMed ID: 16471625
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhanced photocatalytic degradation of C.I. Basic Violet 2 using TiO2-SiO2 composite nanoparticles.
    Mahyar A; Behnajady MA; Modirshahla N
    Photochem Photobiol; 2011; 87(4):795-801. PubMed ID: 21466559
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Effect of TiO2 crystalline phase composition on the physicochemical and catalytic properties of Pd/TiO(2) in selective acetylene hydrogenation.
    Panpranot J; Kontapakdee K; Praserthdam P
    J Phys Chem B; 2006 Apr; 110(15):8019-24. PubMed ID: 16610902
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis and characterization of thermally stable Sm,N co-doped TiO2 with highly visible light activity.
    Ma Y; Zhang J; Tian B; Chen F; Wang L
    J Hazard Mater; 2010 Oct; 182(1-3):386-93. PubMed ID: 20619539
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The fabrication and characterization of novel carbon doped TiO2 nanotubes, nanowires and nanorods with high visible light photocatalytic activity.
    Wu Z; Dong F; Zhao W; Wang H; Liu Y; Guan B
    Nanotechnology; 2009 Jun; 20(23):235701. PubMed ID: 19451679
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Hydrothermal-hydrolysis synthesis and photocatalytic properties of nano-TiO2 with an adjustable crystalline structure.
    Zhang J; Xiao X; Nan J
    J Hazard Mater; 2010 Apr; 176(1-3):617-22. PubMed ID: 20004517
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Visible light photocatalyst: iodine-doped mesoporous titania with a bicrystalline framework.
    Liu G; Chen Z; Dong C; Zhao Y; Li F; Lu GQ; Cheng HM
    J Phys Chem B; 2006 Oct; 110(42):20823-8. PubMed ID: 17048893
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Low temperature N,N-dimethylformamide-assisted synthesis and characterization of anatase-rutile biphasic nanostructured titania.
    Estruga M; Domingo C; Domènech X; Ayllón JA
    Nanotechnology; 2009 Mar; 20(12):125604. PubMed ID: 19420473
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Synthesis and photocatalytic activity of stable nanocrystalline TiO(2) with high crystallinity and large surface area.
    Tian G; Fu H; Jing L; Tian C
    J Hazard Mater; 2009 Jan; 161(2-3):1122-30. PubMed ID: 18524477
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effect of Pt/TiO2 characteristics on temporal behavior of o-cresol decomposition by visible light-induced photocatalysis.
    Chen HW; Ku Y; Kuo YL
    Water Res; 2007 May; 41(10):2069-78. PubMed ID: 17418366
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of calcination temperatures on microstructures and photocatalytic activity of tungsten trioxide hollow microspheres.
    Yu J; Qi L; Cheng B; Zhao X
    J Hazard Mater; 2008 Dec; 160(2-3):621-8. PubMed ID: 18423861
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Biomolecule-controlled hydrothermal synthesis of C-N-S-tridoped TiO2 nanocrystalline photocatalysts for NO removal under simulated solar light irradiation.
    Wang Y; Huang Y; Ho W; Zhang L; Zou Z; Lee S
    J Hazard Mater; 2009 Sep; 169(1-3):77-87. PubMed ID: 19398265
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 48.