BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 16851663)

  • 1. Control of carbon capping for regrowth of aligned carbon nanotubes.
    AuBuchon JF; Chen LH; Jin S
    J Phys Chem B; 2005 Apr; 109(13):6044-8. PubMed ID: 16851663
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Growth, new growth, and amplification of carbon nanotubes as a function of catalyst composition.
    Crouse CA; Maruyama B; Colorado R; Back T; Barron AR
    J Am Chem Soc; 2008 Jun; 130(25):7946-54. PubMed ID: 18507464
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In situ TA-MS study of the six-membered-ring-based growth of carbon nanotubes with benzene precursor.
    Tian Y; Hu Z; Yang Y; Wang X; Chen X; Xu H; Wu Q; Ji W; Chen Y
    J Am Chem Soc; 2004 Feb; 126(4):1180-3. PubMed ID: 14746488
    [TBL] [Abstract][Full Text] [Related]  

  • 4. TEM investigation on the growth mechanism of carbon nanotubes synthesized by hot-filament chemical vapor deposition.
    Chen X; Wang R; Xu J; Yu D
    Micron; 2004; 35(6):455-60. PubMed ID: 15120130
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The evolution of carbon nanotubes during their growth by plasma enhanced chemical vapor deposition.
    Wang H; Ren ZF
    Nanotechnology; 2011 Oct; 22(40):405601. PubMed ID: 21911923
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Vertically aligned dense carbon nanotube growth with diameter control by block copolymer micelle catalyst templates.
    Liu X; Bigioni TP; Xu Y; Cassell AM; Cruden BA
    J Phys Chem B; 2006 Oct; 110(41):20102-6. PubMed ID: 17034181
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Growth and morphology control of carbon nanotubes at the apexes of pyramidal silicon tips.
    Edgeworth JP; Burt DP; Dobson PS; Weaver JM; Macpherson JV
    Nanotechnology; 2010 Mar; 21(10):105605. PubMed ID: 20160341
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A multiscale approach for modeling the early stage growth of single and multiwall carbon nanotubes produced by a metal-catalyzed synthesis process.
    Elliott JA; Hamm M; Shibuta Y
    J Chem Phys; 2009 Jan; 130(3):034704. PubMed ID: 19173534
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Properties, synthesis, and growth mechanisms of carbon nanotubes with special focus on thermal chemical vapor deposition.
    Nessim GD
    Nanoscale; 2010 Aug; 2(8):1306-23. PubMed ID: 20820718
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The fabrication of carbon-nanotube-coated electrodes and a field-emission-based luminescent device.
    Agarwal S; Yamini Sarada B; Kar KK
    Nanotechnology; 2010 Feb; 21(6):065601. PubMed ID: 20057034
    [TBL] [Abstract][Full Text] [Related]  

  • 11. In-flight kinetic measurements of the aerosol growth of carbon nanotubes by electrical mobility classification.
    Kim SH; Zachariah MR
    J Phys Chem B; 2006 Mar; 110(10):4555-62. PubMed ID: 16526684
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High-yield growth of vertically aligned carbon nanotubes on a continuously moving substrate.
    Guzmán de Villoria R; Figueredo SL; Hart AJ; Steiner SA; Slocum AH; Wardle BL
    Nanotechnology; 2009 Oct; 20(40):405611. PubMed ID: 19752503
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tailoring the morphology of carbon nanotube arrays: from spinnable forests to undulating foams.
    Zhang Y; Zou G; Doorn SK; Htoon H; Stan L; Hawley ME; Sheehan CJ; Zhu Y; Jia Q
    ACS Nano; 2009 Aug; 3(8):2157-62. PubMed ID: 19640000
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Controlling the diameter of carbon nanotubes in chemical vapor deposition method by carbon feeding.
    Lu C; Liu J
    J Phys Chem B; 2006 Oct; 110(41):20254-7. PubMed ID: 17034203
    [TBL] [Abstract][Full Text] [Related]  

  • 15. In situ monitoring of single-wall carbon nanotube laser assisted growth.
    Haluska M; Bellouard Y; van de Burgt Y; Dietzel A
    Nanotechnology; 2010 Feb; 21(7):75602. PubMed ID: 20081289
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Orthogonal orientation control of carbon nanotube growth.
    Zhou W; Ding L; Yang S; Liu J
    J Am Chem Soc; 2010 Jan; 132(1):336-41. PubMed ID: 20000705
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Rapid growth and flow-mediated nucleation of millimeter-scale aligned carbon nanotube structures from a thin-film catalyst.
    Hart AJ; Slocum AH
    J Phys Chem B; 2006 Apr; 110(16):8250-7. PubMed ID: 16623503
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Direct growth of aligned multiwalled carbon nanotubes on treated stainless steel substrates.
    Masarapu C; Wei B
    Langmuir; 2007 Aug; 23(17):9046-9. PubMed ID: 17637000
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthesis of carbon nanotubes on diamond-like carbon by the hot filament plasma-enhanced chemical vapor deposition method.
    Choi EC; Park YS; Hong B
    Micron; 2009; 40(5-6):612-6. PubMed ID: 19318258
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Direct growth of aligned carbon nanotubes on bulk metals.
    Talapatra S; Kar S; Pal SK; Vajtai R; Ci L; Victor P; Shaijumon MM; Kaur S; Nalamasu O; Ajayan PM
    Nat Nanotechnol; 2006 Nov; 1(2):112-6. PubMed ID: 18654161
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.