These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

200 related articles for article (PubMed ID: 16851788)

  • 1. First-principles study of Ti-catalyzed hydrogen chemisorption on an Al surface: a critical first step for reversible hydrogen storage in NaAlH4.
    Chaudhuri S; Muckerman JT
    J Phys Chem B; 2005 Apr; 109(15):6952-7. PubMed ID: 16851788
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Exploration of the nature of active Ti species in metallic Ti-doped NaAlH4.
    Wang P; Kang XD; Cheng HM
    J Phys Chem B; 2005 Nov; 109(43):20131-6. PubMed ID: 16853602
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Understanding the role of Ti in reversible hydrogen storage as sodium alanate: a combined experimental and density functional theoretical approach.
    Chaudhuri S; Graetz J; Ignatov A; Reilly JJ; Muckerman JT
    J Am Chem Soc; 2006 Sep; 128(35):11404-15. PubMed ID: 16939263
    [TBL] [Abstract][Full Text] [Related]  

  • 4. First-principles study of the H(2) interaction with transition metal (Ti, V, Ni) doped Mg(0001) surface: Implications for H-storage materials.
    Banerjee S; Pillai CG; Majumder C
    J Chem Phys; 2008 Nov; 129(17):174703. PubMed ID: 19045366
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Equilibrium structure and Ti-catalyzed H2 desorption in NaAlH4 nanoparticles from density functional theory.
    Vegge T
    Phys Chem Chem Phys; 2006 Nov; 8(42):4853-61. PubMed ID: 17066174
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Evolution of the local structure around Ti atoms in NaAlH4 doped with TiCl3 or Ti13.6THF by ball milling using X-ray absorption and X-ray photoelectron spectroscopy.
    Léon A; Kircher O; Fichtner M; Rothe J; Schild D
    J Phys Chem B; 2006 Jan; 110(3):1192-200. PubMed ID: 16471663
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A first-principles analysis of hydrogen interaction in Ti-doped NaAlH4 surfaces: structure and energetics.
    Liu J; Ge Q
    J Phys Chem B; 2006 Dec; 110(51):25863-8. PubMed ID: 17181233
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functional anion concept: effect of fluorine anion on hydrogen storage of sodium alanate.
    Yin LC; Wang P; Kang XD; Sun CH; Cheng HM
    Phys Chem Chem Phys; 2007 Mar; 9(12):1499-502. PubMed ID: 17356758
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of doped transition metal on reversible hydrogen release/uptake from NaAlH4.
    Liu J; Han Y; Ge Q
    Chemistry; 2009; 15(7):1685-95. PubMed ID: 19115295
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Towards a structure-performance relationship for hydrogen storage in Ti-doped NaAlH4 nanoparticles.
    Baldé CP; Leynaud O; Barnes P; Peláez-Jiménez E; de Jong KP; Bitter JH
    Chem Commun (Camb); 2011 Feb; 47(7):2143-5. PubMed ID: 21165478
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Reversible hydrogen storage by NaAlH4 confined within a titanium-functionalized MOF-74(Mg) nanoreactor.
    Stavila V; Bhakta RK; Alam TM; Majzoub EH; Allendorf MD
    ACS Nano; 2012 Nov; 6(11):9807-17. PubMed ID: 23075161
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Separation and characterization of the active species in Ti-doped NaAlH4.
    Xiong R; Sang G; Yan X; Zhang G; Xu Q; Zhang H
    Chem Commun (Camb); 2013 Mar; 49(20):2046-8. PubMed ID: 23385347
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Towards understanding a mechanism for reversible hydrogen storage: theoretical study of transition metal catalysed dehydrogenation of sodium alanate.
    Ljubić I; Clary DC
    Phys Chem Chem Phys; 2010 Apr; 12(16):4012-23. PubMed ID: 20379493
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ternary MgTiX-alloys: a promising route towards low-temperature, high-capacity, hydrogen-storage materials.
    Vermeulen P; van Thiel EF; Notten PH
    Chemistry; 2007; 13(35):9892-8. PubMed ID: 17879246
    [TBL] [Abstract][Full Text] [Related]  

  • 15. TiCl3-enhanced NaAlH4: impact of excess al and development of the Al1-yTiy phase during cycling.
    Brinks HW; Sulic M; Jensen CM; Hauback BC
    J Phys Chem B; 2006 Feb; 110(6):2740-5. PubMed ID: 16471879
    [TBL] [Abstract][Full Text] [Related]  

  • 16. New approaches to hydrogen storage.
    Graetz J
    Chem Soc Rev; 2009 Jan; 38(1):73-82. PubMed ID: 19088966
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural, energetic, and electronic properties of hydrogenated titanium clusters.
    Dhilip Kumar TJ; Tarakeshwar P; Balakrishnan N
    J Chem Phys; 2008 May; 128(19):194714. PubMed ID: 18500893
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A new Li-Al-N-H system for reversible hydrogen storage.
    Lu J; Fang ZZ; Sohn HY
    J Phys Chem B; 2006 Jul; 110(29):14236-9. PubMed ID: 16854126
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Light metal hydrides and complex hydrides for hydrogen storage.
    Schüth F; Bogdanović B; Felderhoff M
    Chem Commun (Camb); 2004 Oct; (20):2249-58. PubMed ID: 15489969
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metal-organic frameworks as templates for nanoscale NaAlH4.
    Bhakta RK; Herberg JL; Jacobs B; Highley A; Behrens R; Ockwig NW; Greathouse JA; Allendorf MD
    J Am Chem Soc; 2009 Sep; 131(37):13198-9. PubMed ID: 19719170
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.