These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
192 related articles for article (PubMed ID: 16851792)
1. Insights into the structure and function of redox-active tyrosines from model compounds. Barry BA; Einarsdóttir O J Phys Chem B; 2005 Apr; 109(15):6972-81. PubMed ID: 16851792 [TBL] [Abstract][Full Text] [Related]
2. Electrochemical and ultraviolet/visible/infrared spectroscopic analysis of heme a and a3 redox reactions in the cytochrome c oxidase from Paracoccus denitrificans: separation of heme a and a3 contributions and assignment of vibrational modes. Hellwig P; Grzybek S; Behr J; Ludwig B; Michel H; Mäntele W Biochemistry; 1999 Feb; 38(6):1685-94. PubMed ID: 10026246 [TBL] [Abstract][Full Text] [Related]
3. Normal modes of redox-active tyrosine: conformation dependence and comparison to experiment. Range K; Ayala I; York D; Barry BA J Phys Chem B; 2006 Jun; 110(22):10970-81. PubMed ID: 16771350 [TBL] [Abstract][Full Text] [Related]
4. Redox-active tyrosine residues in pentapeptides. Vassiliev IR; Offenbacher AR; Barry BA J Phys Chem B; 2005 Dec; 109(48):23077-85. PubMed ID: 16854006 [TBL] [Abstract][Full Text] [Related]
5. Proton-coupled electron transfer in a biomimetic peptide as a model of enzyme regulatory mechanisms. Sibert R; Josowicz M; Porcelli F; Veglia G; Range K; Barry BA J Am Chem Soc; 2007 Apr; 129(14):4393-400. PubMed ID: 17362010 [TBL] [Abstract][Full Text] [Related]
6. Structural character and energetics of tyrosyl radical formation by electron/proton transfers of a covalently linked histidine-tyrosine: a model for cytochrome C oxidase. Bu Y; Cukier RI J Phys Chem B; 2005 Nov; 109(46):22013-26. PubMed ID: 16853859 [TBL] [Abstract][Full Text] [Related]
7. A ligand-exchange mechanism of proton pumping involving tyrosine-422 of subunit I of cytochrome oxidase is ruled out. Mitchell DM; Adelroth P; Hosler JP; Fetter JR; Brzezinski P; Pressler MA; Aasa R; Malmström BG; Alben JO; Babcock GT; Gennis RB; Ferguson-Miller S Biochemistry; 1996 Jan; 35(3):824-8. PubMed ID: 8547262 [TBL] [Abstract][Full Text] [Related]
8. Spectroscopic analysis of tyrosine derivatives: on the role of the tyrosine-histidine covalent linkage in cytochrome c oxidase. Voicescu M; El Khoury Y; Martel D; Heinrich M; Hellwig P J Phys Chem B; 2009 Oct; 113(40):13429-36. PubMed ID: 19754054 [TBL] [Abstract][Full Text] [Related]
9. Redox-induced conformational switching in photosystem-II-inspired biomimetic peptides: a UV resonance Raman study. Pagba CV; Barry BA J Phys Chem B; 2012 Sep; 116(35):10590-9. PubMed ID: 22860514 [TBL] [Abstract][Full Text] [Related]
10. Formation and spectroscopic characterization of the dioxygen adduct of a heme-Cu complex possessing a cross-linked tyrosine-histidine mimic: modeling the active site of cytochrome c oxidase. Liu JG; Naruta Y; Tani F; Chishiro T; Tachi Y Chem Commun (Camb); 2004 Jan; (1):120-1. PubMed ID: 14737361 [TBL] [Abstract][Full Text] [Related]
11. Structural and chemical changes of the P(M) intermediate of paracoccus denitrificans cytochrome c oxidase revealed by IR spectroscopy with labeled tyrosines and histidine. Iwaki M; Puustinen A; Wikström M; Rich PR Biochemistry; 2006 Sep; 45(36):10873-85. PubMed ID: 16953573 [TBL] [Abstract][Full Text] [Related]
12. Synthetic models of the active site of cytochrome C oxidase: influence of tridentate or tetradentate copper chelates bearing a His--Tyr linkage mimic on dioxygen adduct formation by heme/Cu complexes. Liu JG; Naruta Y; Tani F Chemistry; 2007; 13(22):6365-78. PubMed ID: 17503416 [TBL] [Abstract][Full Text] [Related]
13. Redox titration of all electron carriers of cytochrome c oxidase by Fourier transform infrared spectroscopy. Gorbikova EA; Vuorilehto K; Wikström M; Verkhovsky MI Biochemistry; 2006 May; 45(17):5641-9. PubMed ID: 16634645 [TBL] [Abstract][Full Text] [Related]
14. An EPR, ESEEM, structural NMR, and DFT study of a synthetic model for the covalently ring-linked tyrosine-histidine structure in the heme-copper oxidases. Kim SH; Aznar C; Brynda M; Silks LA; Michalczyk R; Unkefer CJ; Woodruff WH; Britt RD J Am Chem Soc; 2004 Mar; 126(8):2328-38. PubMed ID: 14982436 [TBL] [Abstract][Full Text] [Related]
15. Carotenoid photooxidation in photosystem II. Tracewell CA; Vrettos JS; Bautista JA; Frank HA; Brudvig GW Arch Biochem Biophys; 2001 Jan; 385(1):61-9. PubMed ID: 11361027 [TBL] [Abstract][Full Text] [Related]
16. Proton-coupled electron transfer and tyrosine D of photosystem II. Jenson DL; Evans A; Barry BA J Phys Chem B; 2007 Nov; 111(43):12599-604. PubMed ID: 17924690 [TBL] [Abstract][Full Text] [Related]
18. Modeling the active site of cytochrome oxidase: synthesis and characterization of a cross-linked histidine-phenol. Cappuccio JA; Ayala I; Elliott GI; Szundi I; Lewis J; Konopelski JP; Barry BA; Einarsdóttir O J Am Chem Soc; 2002 Feb; 124(8):1750-60. PubMed ID: 11853453 [TBL] [Abstract][Full Text] [Related]
19. Protonation of two adjacent tyrosine residues influences the reduction of cytochrome c by diphenylacetaldehyde: a possible mechanism to select the reducer agent of heme iron. Rinaldi TA; Tersariol IL; Dyszy FH; Prado FM; Nascimento OR; Di Mascio P; Nantes IL Free Radic Biol Med; 2004 Mar; 36(6):802-10. PubMed ID: 14990358 [TBL] [Abstract][Full Text] [Related]
20. Synthesis and structural characterization of cross-linked histidine-phenol Cu(ii) complexes as cytochrome c oxidase active site models. White KN; Sen I; Szundi I; Landaverry YR; Bria LE; Konopelski JP; Olmstead MM; Einarsdóttir O Chem Commun (Camb); 2007 Aug; (31):3252-4. PubMed ID: 17668091 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]