These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
10. Dark field transmission electron microscope images of III-V quantum dot structures. Beanland R Ultramicroscopy; 2005 Jan; 102(2):115-25. PubMed ID: 15590135 [TBL] [Abstract][Full Text] [Related]
15. Efficient exciton transport between strongly quantum-confined silicon quantum dots. Lin Z; Li H; Franceschetti A; Lusk MT ACS Nano; 2012 May; 6(5):4029-38. PubMed ID: 22468899 [TBL] [Abstract][Full Text] [Related]
16. Investigation of confinement effects in ZnO quantum dots. Haranath D; Sahai S; Joshi AG; Gupta BK; Shanker V Nanotechnology; 2009 Oct; 20(42):425701. PubMed ID: 19779241 [TBL] [Abstract][Full Text] [Related]
17. Exciton fine structure and spin relaxation in semiconductor colloidal quantum dots. Kim J; Wong CY; Scholes GD Acc Chem Res; 2009 Aug; 42(8):1037-46. PubMed ID: 19425542 [TBL] [Abstract][Full Text] [Related]
18. The application of hartree approximation in exciton recombination energy for conical InAs/GaAs quantum dots. Yao W; Yu Z; Liu Y; Jia B J Nanosci Nanotechnol; 2010 Nov; 10(11):7612-5. PubMed ID: 21137994 [TBL] [Abstract][Full Text] [Related]
19. Time- and polarization-resolved optical spectroscopy of colloidal CdSe nanocrystal quantum dots in high magnetic fields. Furis M; Hollingsworth JA; Klimov VI; Crooker SA J Phys Chem B; 2005 Aug; 109(32):15332-8. PubMed ID: 16852944 [TBL] [Abstract][Full Text] [Related]
20. Quantum dot photovoltaics in the extreme quantum confinement regime: the surface-chemical origins of exceptional air- and light-stability. Tang J; Brzozowski L; Barkhouse DA; Wang X; Debnath R; Wolowiec R; Palmiano E; Levina L; Pattantyus-Abraham AG; Jamakosmanovic D; Sargent EH ACS Nano; 2010 Feb; 4(2):869-78. PubMed ID: 20104859 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]