BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 16851888)

  • 1. Ribbon- and boardlike nanostructures of nickel hydroxide: synthesis, characterization, and electrochemical properties.
    Yang D; Wang R; He M; Zhang J; Liu Z
    J Phys Chem B; 2005 Apr; 109(16):7654-8. PubMed ID: 16851888
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthesis, characterization, and electrochemical application of Ca(OH)2-, Co(OH)2-, and Y(OH)3-Coated Ni(OH)2 tubes.
    Li W; Zhang S; Chen J
    J Phys Chem B; 2005 Jul; 109(29):14025-32. PubMed ID: 16852761
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Combination of lightweight elements and nanostructured materials for batteries.
    Chen J; Cheng F
    Acc Chem Res; 2009 Jun; 42(6):713-23. PubMed ID: 19354236
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthesis and characterization of stable Co and Cd doped nickel hydroxide nanoparticles for electrochemical applications.
    Vidotti M; Salvador RP; Córdoba de Torresi SI
    Ultrason Sonochem; 2009 Jan; 16(1):35-40. PubMed ID: 18722799
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nickel oxide nanotubes: synthesis and electrochemical performance for use in lithium ion batteries.
    Needham SA; Wang GX; Liu HK; Yang L
    J Nanosci Nanotechnol; 2006 Jan; 6(1):77-81. PubMed ID: 16573073
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Biomolecule-assisted synthesis and electrochemical hydrogen storage of porous spongelike Ni3S2 nanostructures grown directly on nickel foils.
    Zhang B; Ye X; Dai W; Hou W; Xie Y
    Chemistry; 2006 Mar; 12(8):2337-42. PubMed ID: 16389618
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Controllable synthesis of nickel hydroxide and porous nickel oxide nanostructures with different morphologies.
    Dong L; Chu Y; Sun W
    Chemistry; 2008; 14(16):5064-72. PubMed ID: 18399523
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Molybdenum disulfide nanowires and nanoribbons by electrochemical/chemical synthesis.
    Li Q; Walter EC; van der Veer WE; Murray BJ; Newberg JT; Bohannan EW; Switzer JA; Hemminger JC; Penner RM
    J Phys Chem B; 2005 Mar; 109(8):3169-82. PubMed ID: 16851337
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Electrochemical growth of nickel hollow nanostructures on copper substrates.
    Li GR; Kay LG; Liu GK; Tong YX
    J Phys Chem B; 2005 Dec; 109(49):23300-3. PubMed ID: 16375297
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hexamethylenetetramine directed synthesis and properties of a new family of alpha-nickel hydroxide organic-inorganic hybrid materials with high chemical stability.
    Liu BH; Yu SH; Chen SF; Wu CY
    J Phys Chem B; 2006 Mar; 110(9):4039-46. PubMed ID: 16509694
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Large scale synthesis of tellurium nanoribbons in tetraethylene pentamine aqueous solution and the stability of tellurium nanoribbons in ethanol and water.
    He Z; Yu SH
    J Phys Chem B; 2005 Dec; 109(48):22740-5. PubMed ID: 16853963
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Synthesis of CoOOH nanorods and application as coating materials of nickel hydroxide for high temperature Ni-MH cells.
    Hu WK; Gao XP; Geng MM; Gong ZX; Noréus D
    J Phys Chem B; 2005 Mar; 109(12):5392-4. PubMed ID: 16851567
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis and optical properties of CdS nanoribbons.
    Kar S; Satpati B; Satyam PV; Chaudhuri S
    J Phys Chem B; 2005 Oct; 109(41):19134-8. PubMed ID: 16853467
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Applications of in situ Raman spectroscopy for identifying nickel hydroxide materials and surface layers during chemical aging.
    Hall DS; Lockwood DJ; Poirier S; Bock C; MacDougall BR
    ACS Appl Mater Interfaces; 2014 Mar; 6(5):3141-9. PubMed ID: 24502243
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hierarchical graphene nanoribbon assemblies feature unique electronic and mechanical properties.
    Xu Z; Buehler MJ
    Nanotechnology; 2009 Sep; 20(37):375704. PubMed ID: 19706941
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Synthesis of CuO nanowalnuts and nanoribbons from aqueous solution and their catalytic and electrochemical properties.
    Yu Q; Huang H; Chen R; Wang P; Yang H; Gao M; Peng X; Ye Z
    Nanoscale; 2012 Apr; 4(8):2613-20. PubMed ID: 22426955
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Superlong beta-AgVO3 nanoribbons: high-yield synthesis by a pyridine-assisted solution approach, their stability, electrical and electrochemical properties.
    Song JM; Lin YZ; Yao HB; Fan FJ; Li XG; Yu SH
    ACS Nano; 2009 Mar; 3(3):653-60. PubMed ID: 19231822
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Chemical and physical characterization of electrode materials of spent sealed Ni-Cd batteries.
    Nogueira CA; Margarido F
    Waste Manag; 2007; 27(11):1570-9. PubMed ID: 17166709
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Co(OH)3 nanobelts: synthesis, characterization and shape-preserved transformation to pseudo-single-crystalline Co3O4 nanobelts.
    Yang J; Hyodo H; Kimura K; Sasaki T
    Nanotechnology; 2010 Jan; 21(4):045605. PubMed ID: 20009201
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Metal phthalocyanine nanoribbons and nanowires.
    Tong WY; Djurisić AB; Xie MH; Ng AC; Cheung KY; Chan WK; Leung YH; Lin HW; Gwo S
    J Phys Chem B; 2006 Sep; 110(35):17406-13. PubMed ID: 16942077
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.