These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
145 related articles for article (PubMed ID: 16851952)
1. Fluorescence anisotropy as a method to examine the thermodynamics of enantioselectivity. Xu Y; McCarroll ME J Phys Chem B; 2005 Apr; 109(16):8144-52. PubMed ID: 16851952 [TBL] [Abstract][Full Text] [Related]
2. Characterization of chiral interactions using fluorescence anisotropy. Kimaru IW; Xu Y; McCarroll ME Anal Chem; 2006 Dec; 78(24):8485-90. PubMed ID: 17165843 [TBL] [Abstract][Full Text] [Related]
3. Chiral recognition of binaphthyl derivatives using electrokinetic chromatography and steady-state fluorescence anisotropy: effect of temperature. Billiot FH; McCarroll MC; Billiot EJ; Warner IM Electrophoresis; 2004 Feb; 25(4-5):753-7. PubMed ID: 14981704 [TBL] [Abstract][Full Text] [Related]
4. Existence of a low isoenantioselective temperature in complexation gas chromatography. Profound change of enantioselectivity of a nickel(II) chiral selector either bonded to, or dissolved in, poly(dimethylsiloxane). Jiang Z; Schurig V J Chromatogr A; 2008 Apr; 1186(1-2):262-70. PubMed ID: 17888444 [TBL] [Abstract][Full Text] [Related]
5. Molecular recognition thermodynamics of bile salts by beta-cyclodextrin dimers: Factors governing the cooperative binding of cyclodextrin dimers. Liu Y; Li L; Chen Y; Yu L; Fan Z; Ding F J Phys Chem B; 2005 Mar; 109(9):4129-34. PubMed ID: 16851473 [TBL] [Abstract][Full Text] [Related]
6. Temperature effects on the enantioselectivity of basic analytes in capillary EKC using sulfated beta-CDs as chiral selectors. Peng ZL; Yi F; Guo B; Lin JM Electrophoresis; 2007 Oct; 28(20):3753-8. PubMed ID: 17941133 [TBL] [Abstract][Full Text] [Related]
7. Thermodynamics of the molecular and chiral recognition of cycloalkanols and camphor by modified beta-cyclodextrins possessing simple aromatic tethers. Liu Y; Yang EC; Yang YW; Zhang HY; Fan Z; Ding F; Cao R J Org Chem; 2004 Jan; 69(1):173-80. PubMed ID: 14703393 [TBL] [Abstract][Full Text] [Related]
8. Diastereomeric molecular recognition and binding behavior of bile acids by L/D-tryptophan-modified beta-cyclodextrins. Wang H; Cao R; Ke CF; Liu Y; Wada T; Inoue Y J Org Chem; 2005 Oct; 70(22):8703-11. PubMed ID: 16238298 [TBL] [Abstract][Full Text] [Related]
9. The anatomy of the energetics of molecular recognition by calorimetry: chiral discrimination of camphor by alpha-cyclodextrin. Schmidtchen FP Chemistry; 2002 Aug; 8(15):3522-9. PubMed ID: 12203332 [TBL] [Abstract][Full Text] [Related]
10. Understanding chiral molecular micellar separations using steady-state fluorescence anisotropy, capillary electrophoresis, and NMR. Valle BC; Morris KF; Fletcher KA; Fernand V; Sword DM; Eldridge S; Larive CK; Warner IM Langmuir; 2007 Jan; 23(2):425-35. PubMed ID: 17209590 [TBL] [Abstract][Full Text] [Related]
11. Temperature-induced inversion of the elution order of enantiomers in gas chromatography: N-ethoxycarbonyl propylamides and N-trifluoroacetyl ethyl esters of alpha-amino acids on Chirasil-Val-C11 and Chirasil-Dex stationary phases. Levkin PA; Levkina A; Czesla H; Schurig V Anal Chem; 2007 Jun; 79(12):4401-9. PubMed ID: 17489556 [TBL] [Abstract][Full Text] [Related]
13. Determination of the enantiomerization barrier of thalidomide by dynamic capillary electrokinetic chromatography. Schoetz G; Trapp O; Schurig V Electrophoresis; 2001 Sep; 22(15):3185-90. PubMed ID: 11589278 [TBL] [Abstract][Full Text] [Related]
14. Spectrophotometric and calorimetric titration studies on molecular recognition of camphor and borneol by nucleobase-modified beta-cyclodextrins. Liu Y; Zhang Q; Chen Y J Phys Chem B; 2007 Oct; 111(42):12211-8. PubMed ID: 17914791 [TBL] [Abstract][Full Text] [Related]
15. Chromatographic and spectroscopic studies on the chiral recognition of sulfated beta-cyclodextrin as chiral mobile phase additive enantiomeric separation of a chiral amine. Ma S; Shen S; Haddad N; Tang W; Wang J; Lee H; Yee N; Senanayake C; Grinberg N J Chromatogr A; 2009 Feb; 1216(8):1232-40. PubMed ID: 19159891 [TBL] [Abstract][Full Text] [Related]
16. Complexation and chiral recognition thermodynamics of gamma-cyclodextrin with N-acetyl- and N-carbobenzyloxy-dipeptides possessing two aromatic rings. Rekharsky MV; Yamamura H; Kawai M; Inoue Y J Org Chem; 2003 Jun; 68(13):5228-35. PubMed ID: 12816482 [TBL] [Abstract][Full Text] [Related]
17. Extraordinary chiral discrimination in inclusion gas chromatography. thermodynamics of enantioselectivity between a racemic perfluorodiether and a modified gamma-cyclodextrin. Schurig V; Schmidt R J Chromatogr A; 2003 Jun; 1000(1-2):311-24. PubMed ID: 12877177 [TBL] [Abstract][Full Text] [Related]
18. Fluorescence anisotropy decay and solvation dynamics in a nanocavity: coumarin 153 in methyl beta-cyclodextrins. Sen P; Roy D; Mondal SK; Sahu K; Ghosh S; Bhattacharyya K J Phys Chem A; 2005 Nov; 109(43):9716-22. PubMed ID: 16833284 [TBL] [Abstract][Full Text] [Related]
19. Binding of dimethyl 2,3-naphthalenedicarboxylate with alpha-, beta- and gamma-cyclodextrins in aqueous solution. Alvariza C; Usero R; Mendicuti F Spectrochim Acta A Mol Biomol Spectrosc; 2007 Jun; 67(2):420-9. PubMed ID: 16965929 [TBL] [Abstract][Full Text] [Related]
20. A simple method for the determination of enantiomeric composition of propranolol enantiomers. Wei Y; Kang H; Ren Y; Qin G; Shuang S; Dong C Analyst; 2013 Jan; 138(1):107-10. PubMed ID: 23139926 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]