BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

664 related articles for article (PubMed ID: 16851957)

  • 1. Thermodynamic characterization of fluids confined in heterogeneous pores by monte carlo simulations in the grand canonical and the isobaric-isothermal ensembles.
    Puibasset J
    J Phys Chem B; 2005 Apr; 109(16):8185-94. PubMed ID: 16851957
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Grand potential, helmholtz free energy, and entropy calculation in heterogeneous cylindrical pores by the grand canonical Monte Carlo simulation method.
    Puibasset J
    J Phys Chem B; 2005 Jan; 109(1):480-7. PubMed ID: 16851039
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Surface excess free energy of simple fluids confined in cylindrical pores by isothermal-isobaric Monte Carlo: influence of pore size.
    Puibasset J
    J Chem Phys; 2007 May; 126(18):184701. PubMed ID: 17508818
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Thermodynamic pressure of simple fluids confined in cylindrical nanopores by isothermal-isobaric Monte Carlo: influence of fluid/substrate interactions.
    Puibasset J
    J Chem Phys; 2007 Aug; 127(7):074702. PubMed ID: 17718622
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Capillary condensation in a geometrically and a chemically heterogeneous pore: a molecular simulation study.
    Puibasset J
    J Phys Chem B; 2005 Mar; 109(10):4700-6. PubMed ID: 16851551
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A simulation method for the calculation of chemical potentials in small, inhomogeneous, and dense systems.
    Neimark AV; Vishnyakov A
    J Chem Phys; 2005 Jun; 122(23):234108. PubMed ID: 16008431
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Water adsorption in disordered mesoporous silica (Vycor) at 300 K and 650 K: a Grand Canonical Monte Carlo simulation study of hysteresis.
    Puibasset J; Pellenq RJ
    J Chem Phys; 2005 Mar; 122(9):094704. PubMed ID: 15836159
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phase coexistence in heterogeneous porous media: a new extension to Gibbs ensemble Monte Carlo simulation method.
    Puibasset J
    J Chem Phys; 2005 Apr; 122(13):134710. PubMed ID: 15847492
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Grand canonical monte carlo simulation study of water adsorption in silicalite at 300 K.
    Puibasset J; Pellenq RJ
    J Phys Chem B; 2008 May; 112(20):6390-7. PubMed ID: 18433164
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Monte-Carlo multiscale simulation study of argon adsorption/desorption hysteresis in mesoporous heterogeneous tubular pores like MCM-41 or oxidized porous silicon.
    Puibasset J
    Langmuir; 2009 Jan; 25(2):903-11. PubMed ID: 19063620
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A grand canonical Monte Carlo study of capillary condensation in mesoporous media: effect of the pore morphology and topology.
    Coasne B; Pellenq RJ
    J Chem Phys; 2004 Aug; 121(8):3767-74. PubMed ID: 15303945
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reactive Monte Carlo and grand-canonical Monte Carlo simulations of the propene metathesis reaction system.
    Hansen N; Jakobtorweihen S; Keil FJ
    J Chem Phys; 2005 Apr; 122(16):164705. PubMed ID: 15945697
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pore size distribution analysis of selected hexagonal mesoporous silicas by grand canonical Monte Carlo simulations.
    Herdes C; Santos MA; Medina F; Vega LF
    Langmuir; 2005 Sep; 21(19):8733-42. PubMed ID: 16142955
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Torsion-induced phase transitions in fluids confined between chemically decorated substrates.
    Sacquin-Mora S; Fuchs AH; Schoen M
    J Chem Phys; 2004 Nov; 121(18):9077-86. PubMed ID: 15527374
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Thermodynamics and partitioning of homopolymers into a slit-A grand canonical Monte Carlo simulation study.
    Jiang W; Wang Y
    J Chem Phys; 2004 Aug; 121(8):3905-13. PubMed ID: 15303959
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Capillary Condensation in Pores with Energetically Heterogeneous Walls: Density Functional versus Monte Carlo Calculations.
    Reszko-Zygmunt J; Pizio O; Rzysko W; Sokolowski S; Sokolowska Z
    J Colloid Interface Sci; 2001 Sep; 241(1):169-177. PubMed ID: 11502119
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Phase equilibria and interfacial tension of fluids confined in narrow pores.
    Hamada Y; Koga K; Tanaka H
    J Chem Phys; 2007 Aug; 127(8):084908. PubMed ID: 17764295
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Dual control cell reaction ensemble molecular dynamics: a method for simulations of reactions and adsorption in porous materials.
    Lisal M; Brennan JK; Smith WR; Siperstein FR
    J Chem Phys; 2004 Sep; 121(10):4901-12. PubMed ID: 15332926
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Pore-lattice deformations in ordered mesoporous matrices: experimental studies and theoretical analysis.
    Schoen M; Paris O; Günther G; Müter D; Prass J; Fratzl P
    Phys Chem Chem Phys; 2010 Oct; 12(37):11267-79. PubMed ID: 20668767
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mean field kinetic theory for a lattice gas model of fluids confined in porous materials.
    Monson PA
    J Chem Phys; 2008 Feb; 128(8):084701. PubMed ID: 18315066
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 34.