These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 16851976)

  • 1. PECT model analysis and predictions of experimental collisional energy transfer probabilities P(E',E) and moments for azulene and biphenylene.
    Lenzer T; Luther K; Nilsson D; Nordholm S
    J Phys Chem B; 2005 May; 109(17):8325-31. PubMed ID: 16851976
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Kinetically controlled selective ionization study on the efficient collisional energy transfer in the deactivation of highly vibrationally excited trans-stilbene.
    Frerichs H; Hollerbach M; Lenzer T; Luther K
    J Phys Chem A; 2006 Mar; 110(9):3179-85. PubMed ID: 16509642
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Statistical theory of collisional energy transfer in molecular collisions. trans-stilbene deactivation by argon, carbon dioxide, and n-heptane.
    Nilsson D; Nordholm S
    J Phys Chem A; 2006 Mar; 110(9):3289-96. PubMed ID: 16509655
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Energy transfer between polyatomic molecules II: Energy transfer quantities and probability density functions in benzene, toluene, p-xylene, and azulene collisions.
    Bernshtein V; Oref I
    J Phys Chem A; 2006 Feb; 110(4):1541-51. PubMed ID: 16435815
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Collisional relaxation of the three vibrationally excited difluorobenzene isomers by collisions with CO2: effect of donor vibrational mode.
    Mitchell DG; Johnson AM; Johnson JA; Judd KA; Kim K; Mayhew M; Powell AL; Sevy ET
    J Phys Chem A; 2008 Feb; 112(6):1157-67. PubMed ID: 18201072
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Energy transfer between polyatomic molecules. 3. Energy transfer quantities and probability density functions in self-collisions of benzene, toluene, p-xylene and azulene.
    Bernshtein V; Oref I
    J Phys Chem A; 2006 Jul; 110(27):8477-87. PubMed ID: 16821831
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rotationally resolved IR-diode laser studies of ground-state CO2 excited by collisions with vibrationally excited pyridine.
    Johnson JA; Kim K; Mayhew M; Mitchell DG; Sevy ET
    J Phys Chem A; 2008 Mar; 112(12):2543-52. PubMed ID: 18321080
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Accounting for the dependence of P(E',E) on the maximum impact parameter in classical trajectory calculations: application to the H2O-H2O collisional relaxation.
    Bustos-Marún RA; Coronado EA; Ferrero JC
    J Chem Phys; 2007 Oct; 127(15):154305. PubMed ID: 17949147
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Energy-dependent dynamics of large-DeltaE collisions: highly vibrationally excited azulene (E=20 390 and 38 580 cm(-1)) with CO2.
    Yuan L; Du J; Mullin AS
    J Chem Phys; 2008 Jul; 129(1):014303. PubMed ID: 18624476
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Energy transfer between azulene and krypton: comparison between experiment and computation.
    Bernshtein V; Oref I
    J Chem Phys; 2006 Oct; 125(13):133105. PubMed ID: 17029431
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Collisional energy transfer probability densities P(E, J; E', J') for monatomics colliding with large molecules.
    Barker JR; Weston RE
    J Phys Chem A; 2010 Oct; 114(39):10619-33. PubMed ID: 20843047
    [TBL] [Abstract][Full Text] [Related]  

  • 12. MassKinetics: a theoretical model of mass spectra incorporating physical processes, reaction kinetics and mathematical descriptions.
    Drahos L; Vékey K
    J Mass Spectrom; 2001 Mar; 36(3):237-63. PubMed ID: 11312517
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Energy transfer between polyatomic molecules. 1. Gateway modes, energy transfer quantities and energy transfer probability density functions in benzene-benzene and Ar-benzene collisions.
    Bernshtein V; Oref I
    J Phys Chem B; 2005 May; 109(17):8310-9. PubMed ID: 16851974
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High resolution IR diode laser study of collisional energy transfer between highly vibrationally excited monofluorobenzene and CO2: the effect of donor fluorination on strong collision energy transfer.
    Kim K; Johnson AM; Powell AL; Mitchell DG; Sevy ET
    J Chem Phys; 2014 Dec; 141(23):234306. PubMed ID: 25527934
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Acetone photolysis at 248 nm revisited: pressure dependence of the CO and CO2 quantum yields.
    Somnitz H; Ufer T; Zellner R
    Phys Chem Chem Phys; 2009 Oct; 11(38):8522-31. PubMed ID: 19774283
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Energy transfer of highly vibrationally excited azulene: collisions between azulene and krypton.
    Liu CL; Hsu HC; Lyu JJ; Ni CK
    J Chem Phys; 2006 Feb; 124(5):054302. PubMed ID: 16468864
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of the cluster angular momentum J and the projectile orbital momentum L on capture probability and postcollision dynamics.
    Mella M
    J Chem Phys; 2009 Sep; 131(12):124309. PubMed ID: 19791883
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Energy transfer of highly vibrationally excited azulene. III. Collisions between azulene and argon.
    Liu CL; Hsu HC; Lyu JJ; Ni CK
    J Chem Phys; 2006 Nov; 125(20):204309. PubMed ID: 17144702
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quenching of highly vibrationally excited pyrimidine by collisions with CO2.
    Johnson JA; Duffin AM; Hom BJ; Jackson KE; Sevy ET
    J Chem Phys; 2008 Feb; 128(5):054304. PubMed ID: 18266447
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Multiplex detection of collisional energy transfer using KCSFI.
    Frerichs H; Lenzer T; Luther K; Schwarzer D
    Phys Chem Chem Phys; 2005 Feb; 7(4):620-6. PubMed ID: 19787878
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.