These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

221 related articles for article (PubMed ID: 16852039)

  • 61. Colloidal gold nanoparticles as catalyst for carbon-carbon bond formation: application to aerobic homocoupling of phenylboronic acid in water.
    Tsunoyama H; Sakurai H; Ichikuni N; Negishi Y; Tsukuda T
    Langmuir; 2004 Dec; 20(26):11293-6. PubMed ID: 15595746
    [TBL] [Abstract][Full Text] [Related]  

  • 62. Surface enhanced Raman scattering of pyridine adsorbed on Au@Pd core/shell nanoparticles.
    Yang Z; Li Y; Li Z; Wu D; Kang J; Xu H; Sun M
    J Chem Phys; 2009 Jun; 130(23):234705. PubMed ID: 19548748
    [TBL] [Abstract][Full Text] [Related]  

  • 63. Structural and electronic properties of micellar Au nanoparticles: size and ligand effects.
    Behafarid F; Matos J; Hong S; Zhang L; Rahman TS; Roldan Cuenya B
    ACS Nano; 2014 Jul; 8(7):6671-81. PubMed ID: 24437393
    [TBL] [Abstract][Full Text] [Related]  

  • 64. Extinction coefficient of gold nanoparticles with different sizes and different capping ligands.
    Liu X; Atwater M; Wang J; Huo Q
    Colloids Surf B Biointerfaces; 2007 Jul; 58(1):3-7. PubMed ID: 16997536
    [TBL] [Abstract][Full Text] [Related]  

  • 65. Nanostructured Ti-W mixed-metal oxides: structural and electronic properties.
    Fernández-García M; Martínez-Arias A; Fuerte A; Conesa JC
    J Phys Chem B; 2005 Apr; 109(13):6075-83. PubMed ID: 16851668
    [TBL] [Abstract][Full Text] [Related]  

  • 66. Alkanetelluroxide-protected gold nanoparticles.
    Li Y; Silverton LC; Haasch R; Tong YY
    Langmuir; 2008 Jul; 24(14):7048-53. PubMed ID: 18557637
    [TBL] [Abstract][Full Text] [Related]  

  • 67. Chiral N-isobutyryl-cysteine protected gold nanoparticles: preparation, size selection, and optical activity in the UV-vis and infrared.
    Gautier C; Bürgi T
    J Am Chem Soc; 2006 Aug; 128(34):11079-87. PubMed ID: 16925425
    [TBL] [Abstract][Full Text] [Related]  

  • 68. Time-resolved in situ XAS study of the preparation of supported gold clusters.
    Bus E; Prins R; van Bokhoven JA
    Phys Chem Chem Phys; 2007 Jul; 9(25):3312-20. PubMed ID: 17579741
    [TBL] [Abstract][Full Text] [Related]  

  • 69. Au nanoparticles on a templating TiO(x)/Pt(111) ultrathin polar film: a photoemission and photoelectron diffraction study.
    Rizzi GA; Sedona F; Artiglia L; Agnoli S; Barcaro G; Fortunelli A; Cavaliere E; Gavioli L; Granozzi G
    Phys Chem Chem Phys; 2009 Apr; 11(13):2177-85. PubMed ID: 19305890
    [TBL] [Abstract][Full Text] [Related]  

  • 70. Interfacial bonding of gold nanoparticles on a H-terminated Si(100) substrate obtained by electro- and electroless deposition.
    Zhao L; Siu AC; Petrus JA; He Z; Leung KT
    J Am Chem Soc; 2007 May; 129(17):5730-4. PubMed ID: 17411051
    [TBL] [Abstract][Full Text] [Related]  

  • 71. Assessment of 4-(dimethylamino)pyridine as a capping agent for gold nanoparticles.
    Gandubert VJ; Lennox RB
    Langmuir; 2005 Jul; 21(14):6532-9. PubMed ID: 15982063
    [TBL] [Abstract][Full Text] [Related]  

  • 72. Chemiresistive sensing of volatile organic compounds with films of surfactant-stabilized gold and gold-silver alloy nanoparticles.
    Ibañez FJ; Zamborini FP
    ACS Nano; 2008 Aug; 2(8):1543-52. PubMed ID: 19206357
    [TBL] [Abstract][Full Text] [Related]  

  • 73. Aggregation-resistant water-soluble gold nanoparticles.
    Rouhana LL; Jaber JA; Schlenoff JB
    Langmuir; 2007 Dec; 23(26):12799-801. PubMed ID: 18004894
    [TBL] [Abstract][Full Text] [Related]  

  • 74. Kinetic evaluation of highly active supported gold catalysts prepared from monolayer-protected clusters: an experimental Michaelis-Menten approach for determining the oxygen binding constant during CO oxidation catalysis.
    Long CG; Gilbertson JD; Vijayaraghavan G; Stevenson KJ; Pursell CJ; Chandler BD
    J Am Chem Soc; 2008 Aug; 130(31):10103-15. PubMed ID: 18620389
    [TBL] [Abstract][Full Text] [Related]  

  • 75. Relativistic effects and the unique low-symmetry structures of gold nanoclusters.
    Huang W; Ji M; Dong CD; Gu X; Wang LM; Gong XG; Wang LS
    ACS Nano; 2008 May; 2(5):897-904. PubMed ID: 19206486
    [TBL] [Abstract][Full Text] [Related]  

  • 76. Restructuring-induced activity of SiO(2)-supported large au nanoparticles in low-temperature CO oxidation.
    Qian K; Sun H; Huang W; Fang J; Lv S; He B; Jiang Z; Wei S
    Chemistry; 2008; 14(34):10595-602. PubMed ID: 18925586
    [TBL] [Abstract][Full Text] [Related]  

  • 77. X-ray photoelectron spectrum in surface interfacing of gold nanoparticles with polymer molecules in a hybrid nanocomposite structure.
    Tripathy P; Mishra A; Ram S; Fecht HJ; Bansmann J; Behm RJ
    Nanotechnology; 2009 Feb; 20(7):075701. PubMed ID: 19417429
    [TBL] [Abstract][Full Text] [Related]  

  • 78. A simple method of superlattice formation: step-by-step evaluation of crystal growth of gold nanoparticles through seed-growth method.
    Bakshi MS
    Langmuir; 2009 Nov; 25(21):12697-705. PubMed ID: 19618928
    [TBL] [Abstract][Full Text] [Related]  

  • 79. Near-edge X-ray absorption fine structure spectroscopy of diamondoid thiol monolayers on gold.
    Willey TM; Fabbri JD; Lee JR; Schreiner PR; Fokin AA; Tkachenko BA; Fokina NA; Dahl JE; Carlson RM; Vance AL; Yang W; Terminello LJ; van Buuren T; Melosh NA
    J Am Chem Soc; 2008 Aug; 130(32):10536-44. PubMed ID: 18642809
    [TBL] [Abstract][Full Text] [Related]  

  • 80. An in situ quick XAFS spectroscopy study on the formation mechanism of small gold nanoparticles supported by porphyrin-cored tetradentate passivants.
    Ohyama J; Teramura K; Higuchi Y; Shishido T; Hitomi Y; Aoki K; Funabiki T; Kodera M; Kato K; Tanida H; Uruga T; Tanaka T
    Phys Chem Chem Phys; 2011 Jun; 13(23):11128-35. PubMed ID: 21566846
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.