These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

215 related articles for article (PubMed ID: 16852039)

  • 81. Monodispersed core-shell Fe3O4@Au nanoparticles.
    Wang L; Luo J; Fan Q; Suzuki M; Suzuki IS; Engelhard MH; Lin Y; Kim N; Wang JQ; Zhong CJ
    J Phys Chem B; 2005 Nov; 109(46):21593-601. PubMed ID: 16853803
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Telomere DNA conformation change induced aggregation of gold nanoparticles as detected by plasmon resonance light scattering technique.
    Huang CZ; Liao QG; Gan LH; Guo FL; Li YF
    Anal Chim Acta; 2007 Dec; 604(2):165-9. PubMed ID: 17996538
    [TBL] [Abstract][Full Text] [Related]  

  • 83. DNA-embedded Au/Ag core-shell nanoparticles.
    Lim DK; Kim IJ; Nam JM
    Chem Commun (Camb); 2008 Nov; (42):5312-4. PubMed ID: 18985194
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Preparative manipulation of gold nanoparticles by reversible binding to a polymeric solid support.
    Abed O; Vaskevich A; Arad-Yellin R; Shanzer A; Rubinstein I
    Chemistry; 2005 Apr; 11(9):2836-41. PubMed ID: 15744704
    [TBL] [Abstract][Full Text] [Related]  

  • 85. A simple method for large scale synthesis of highly monodisperse gold nanoparticles at room temperature and their electron relaxation properties.
    Polavarapu L; Xu QH
    Nanotechnology; 2009 May; 20(18):185606. PubMed ID: 19420622
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Hierarchical assemblies of gold nanoparticles at the surface of a film formed by a bridged silsesquioxane containing pendant dodecyl chains.
    Gómez ML; Hoppe CE; Zucchi IA; Williams RJ; Giannotti MI; López-Quintela MA
    Langmuir; 2009 Jan; 25(2):1210-7. PubMed ID: 19105745
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Paclitaxel-functionalized gold nanoparticles.
    Gibson JD; Khanal BP; Zubarev ER
    J Am Chem Soc; 2007 Sep; 129(37):11653-61. PubMed ID: 17718495
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Colorimetric determination of urinary adenosine using aptamer-modified gold nanoparticles.
    Chen SJ; Huang YF; Huang CC; Lee KH; Lin ZH; Chang HT
    Biosens Bioelectron; 2008 Jun; 23(11):1749-53. PubMed ID: 18359620
    [TBL] [Abstract][Full Text] [Related]  

  • 89. One-pot synthesis and characterization of three kinds of thiol-organosilica nanoparticles.
    Nakamura M; Ishimura K
    Langmuir; 2008 May; 24(9):5099-108. PubMed ID: 18366224
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Synthesis and characterization of ferrocene modified Fe3O4@Au magnetic nanoparticles and its application.
    Qiu JD; Xiong M; Liang RP; Peng HP; Liu F
    Biosens Bioelectron; 2009 Apr; 24(8):2649-53. PubMed ID: 19230651
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Synthesis of magnetic Fe2O3/Au core/shell nanoparticles for bioseparation and immunoassay based on surface-enhanced Raman spectroscopy.
    Bao F; Yao JL; Gu RA
    Langmuir; 2009 Sep; 25(18):10782-7. PubMed ID: 19552373
    [TBL] [Abstract][Full Text] [Related]  

  • 92. A spectroscopic study of self-assembled monolayer of porphyrin-functionalized oligo(phenyleneethynylene)s on gold: the influence of the anchor moiety.
    Watcharinyanon S; Nilsson D; Moons E; Shaporenko A; Zharnikov M; Albinsson B; Mårtensson J; Johansson LS
    Phys Chem Chem Phys; 2008 Sep; 10(34):5264-75. PubMed ID: 18728869
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Enhanced plasmon resonance light scattering signals of colloidal gold resulted from its interactions with organic small molecules using captopril as an example.
    De Liu Z; Huang CZ; Li YF; Long YF
    Anal Chim Acta; 2006 Sep; 577(2):244-9. PubMed ID: 17723679
    [TBL] [Abstract][Full Text] [Related]  

  • 94. Controlled UV-C light-induced fusion of thiol-passivated gold nanoparticles.
    Pocoví-Martínez S; Parreño-Romero M; Agouram S; Pérez-Prieto J
    Langmuir; 2011 May; 27(9):5234-41. PubMed ID: 21480603
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Photocatalytic degradation of methyl red dye by silica nanoparticles.
    Badr Y; Abd El-Wahed MG; Mahmoud MA
    J Hazard Mater; 2008 Jun; 154(1-3):245-53. PubMed ID: 18055110
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Synthesis of atomic gold clusters with strong electrocatalytic activities.
    J Rodríguez-Vázquez M; Blanco MC; Lourido R; Vázquez-Vázquez C; Pastor E; Planes GA; Rivas J; López-Quintela MA
    Langmuir; 2008 Nov; 24(21):12690-4. PubMed ID: 18850689
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Self-assembly of ionic liquid (BMI-PF6)-stabilized gold nanoparticles on a silicon surface: chemical and structural aspects.
    Khatri OP; Adachi K; Murase K; Okazaki K; Torimoto T; Tanaka N; Kuwabata S; Sugimura H
    Langmuir; 2008 Aug; 24(15):7785-92. PubMed ID: 18572958
    [TBL] [Abstract][Full Text] [Related]  

  • 98. Ligand-stabilized and atomically precise gold nanocluster catalysis: a case study for correlating fundamental electronic properties with catalysis.
    Liu J; Krishna KS; Losovyj YB; Chattopadhyay S; Lozova N; Miller JT; Spivey JJ; Kumar CS
    Chemistry; 2013 Jul; 19(31):10201-8. PubMed ID: 23788381
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Functionalized gold nanoparticles: synthesis, structure and colloid stability.
    Zhou J; Ralston J; Sedev R; Beattie DA
    J Colloid Interface Sci; 2009 Mar; 331(2):251-62. PubMed ID: 19135209
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Ultrafast electron transfer from oligo(p-phenylene-ethynylene)thiol to gold.
    Wang L; Chen W; Huang C; Chen ZK; Wee AT
    J Phys Chem B; 2006 Jan; 110(2):674-6. PubMed ID: 16471586
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.