These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

135 related articles for article (PubMed ID: 16852090)

  • 1. Residence time distribution of a cylindrical microreactor.
    Hsu JP; Wei TH
    J Phys Chem B; 2005 May; 109(18):9160-5. PubMed ID: 16852090
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Residence time distribution for electrokinetic flow through a microchannel comprising a bundle of cylinders.
    Hsu JP; Ting CC; Lee DJ; Tseng S; Chen CJ; Su A
    J Colloid Interface Sci; 2007 Mar; 307(1):265-71. PubMed ID: 17187815
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Transient electrophoresis of dielectric spheres.
    Keh HJ; Huang YC
    J Colloid Interface Sci; 2005 Nov; 291(1):282-91. PubMed ID: 15990107
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Electrical potential in a cylindrical double layer: a functional theory approach.
    Tseng S; Jiang JM; Hsu JP
    J Colloid Interface Sci; 2004 May; 273(1):218-23. PubMed ID: 15051455
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Analysis of the response of suspended colloidal soft particles to a constant electric field.
    López-García JJ; Grosse C; Horno J
    J Colloid Interface Sci; 2005 Jun; 286(1):400-9. PubMed ID: 15848444
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Magnetohydrodynamic effects on a charged colloidal sphere with arbitrary double-layer thickness.
    Hsieh TH; Keh HJ
    J Chem Phys; 2010 Oct; 133(13):134103. PubMed ID: 20942519
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A novel method for determining residence time distribution in intricately structured microreactors.
    Lohse S; Kohnen BT; Janasek D; Dittrich PS; Franzke J; Agar DW
    Lab Chip; 2008 Mar; 8(3):431-8. PubMed ID: 18305861
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrophoresis of a finite cylinder positioned eccentrically along the axis of a long cylindrical pore.
    Hsu JP; Kuo CC
    J Phys Chem B; 2006 Sep; 110(35):17607-15. PubMed ID: 16942106
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Frequency-dependent laminar electroosmotic flow in a closed-end rectangular microchannel.
    Marcos ; Yang C; Ooi KT; Wong TN; Masliyah JH
    J Colloid Interface Sci; 2004 Jul; 275(2):679-98. PubMed ID: 15178303
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Electrophoretic Mobility of a Concentrated Suspension of Spherical Particles.
    Lee E; Chu JW; Hsu JP
    J Colloid Interface Sci; 1999 Jan; 209(1):240-246. PubMed ID: 9878159
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electroosmotic Flow of a General Electrolyte Solution through a Fibrous Medium.
    Lee E; Lee YS; Yen FY; Hsu JP
    J Colloid Interface Sci; 2000 Mar; 223(2):223-228. PubMed ID: 10700406
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Electrostatic potential and electroosmotic flow in a cylindrical capillary filled with symmetric electrolyte: analytic solutions in thin double layer approximation.
    Petsev DN; Lopez GP
    J Colloid Interface Sci; 2006 Feb; 294(2):492-8. PubMed ID: 16085083
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Theoretical analysis of a novel electrical field assisted membrane module comprising an array of microchannel units.
    Hsu JP; Lin SH; Tseng S
    J Phys Chem B; 2006 May; 110(20):10082-7. PubMed ID: 16706469
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electrical double layer around a spherical colloid particle: the excluded volume effect.
    López-García JJ; Aranda-Rascón MJ; Horno J
    J Colloid Interface Sci; 2007 Dec; 316(1):196-201. PubMed ID: 17761192
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mathematical model for mixing reactants in a capillary microreactor by transverse diffusion of laminar flow profiles.
    Okhonin V; Wong E; Krylov SN
    Anal Chem; 2008 Oct; 80(19):7482-6. PubMed ID: 18729469
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Boundary effect on electrophoresis: finite cylinder in a cylindrical pore.
    Hsu JP; Ku MH
    J Colloid Interface Sci; 2005 Mar; 283(2):592-600. PubMed ID: 15721937
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of electroosmotic flow on the electrophoresis of a membrane-coated sphere along the axis of a cylindrical pore.
    Hsu JP; Chen ZS; Tseng S
    J Phys Chem B; 2009 May; 113(21):7701-8. PubMed ID: 19456176
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrophoresis of two identical rigid spheres in a charged cylindrical pore.
    Hsu JP; Yeh LH
    J Phys Chem B; 2007 Mar; 111(10):2579-86. PubMed ID: 17305389
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Dynamic electrophoresis of a droplet in a spherical cavity.
    Lee E; Min WL; Hsu JP
    Langmuir; 2006 Apr; 22(8):3920-8. PubMed ID: 16584276
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Flash chemistry: flow microreactor synthesis based on high-resolution reaction time control.
    Yoshida J
    Chem Rec; 2010 Oct; 10(5):332-41. PubMed ID: 20848664
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.