BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

246 related articles for article (PubMed ID: 16852166)

  • 1. Remarkable nanosize effect of zirconia in Au/ZrO2 catalyst for CO oxidation.
    Zhang X; Wang H; Xu BQ
    J Phys Chem B; 2005 May; 109(19):9678-83. PubMed ID: 16852166
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Support effect in high activity gold catalysts for CO oxidation.
    Comotti M; Li WC; Spliethoff B; Schüth F
    J Am Chem Soc; 2006 Jan; 128(3):917-24. PubMed ID: 16417382
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Origin of Oxide sensitivity in gold-based catalysts: a first principle study of CO oxidation over Au supported on monoclinic and tetragonal ZrO2.
    Wang CM; Fan KN; Liu ZP
    J Am Chem Soc; 2007 Mar; 129(9):2642-7. PubMed ID: 17290994
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Yolk-shell gold nanoparticles as model materials for support-effect studies in heterogeneous catalysis: Au, @C and Au, @ZrO2 for CO oxidation as an example.
    Galeano C; Güttel R; Paul M; Arnal P; Lu AH; Schüth F
    Chemistry; 2011 Jul; 17(30):8434-9. PubMed ID: 21656585
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Oxidation of CO on gold supported catalysts prepared by laser vaporization: direct evidence of support contribution.
    Arrii S; Morfin F; Renouprez AJ; Rousset JL
    J Am Chem Soc; 2004 Feb; 126(4):1199-205. PubMed ID: 14746491
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Insights into the oxidation and decomposition of CO on Au/alpha-Fe2O3 and on alpha-Fe2O3 by coupled TG-FTIR.
    Zhong Z; Highfield J; Lin M; Teo J; Han YF
    Langmuir; 2008 Aug; 24(16):8576-82. PubMed ID: 18605709
    [TBL] [Abstract][Full Text] [Related]  

  • 7. [Study on the spectra of Au/alpha-Fe2O3 catalysts modified by ZrO2 and Nb2O5 promoters].
    Zhang FL; Zheng Q; Lin XY; Zhang HH; Li JW; Zhang Q
    Guang Pu Xue Yu Guang Pu Fen Xi; 2007 Apr; 27(4):781-4. PubMed ID: 17608198
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modifications induced by pretreatments on Au/SBA-15 and their influence on the catalytic activity for low temperature CO oxidation.
    Rombi E; Cutrufello MG; Cannas C; Casu M; Gazzoli D; Occhiuzzi M; Monaci R; Ferino I
    Phys Chem Chem Phys; 2009 Jan; 11(3):593-602. PubMed ID: 19283278
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Preferential oxidation of CO in H2 over highly loaded Au/ZrO2 catalysts obtained by direct oxidation of bulk alloy.
    Lomello-Tafin M; Chaou AA; Morfin F; Caps V; Rousset JL
    Chem Commun (Camb); 2005 Jan; (3):388-90. PubMed ID: 15645047
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Catalytic performance of nanosized Pt-Au alloy catalyst in oxidation of methanol and toluene.
    Kim KJ; Kim YH; Ahn HG
    J Nanosci Nanotechnol; 2007 Nov; 7(11):3795-9. PubMed ID: 18047061
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microstructured Au/TiO2 model catalyst systems.
    Kielbassa S; Kinne M; Behm RJ
    Langmuir; 2004 Aug; 20(16):6644-50. PubMed ID: 15274568
    [TBL] [Abstract][Full Text] [Related]  

  • 12. On the morphology and stability of Au nanoparticles on TiO2(110) prepared from micelle-stabilized precursors.
    Kielbassa S; Häbich A; Schnaidt J; Bansmann J; Weigl F; Boyen HG; Ziemann P; Behm RJ
    Langmuir; 2006 Aug; 22(18):7873-80. PubMed ID: 16922577
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Evolution of catalytic activity of Au-Ag bimetallic nanoparticles on mesoporous support for CO oxidation.
    Wang AQ; Chang CM; Mou CY
    J Phys Chem B; 2005 Oct; 109(40):18860-7. PubMed ID: 16853427
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Preparation and comparison of supported gold nanocatalysts on anatase, brookite, rutile, and P25 polymorphs of TiO2 for catalytic oxidation of CO.
    Yan W; Chen B; Mahurin SM; Schwartz V; Mullins DR; Lupini AR; Pennycook SJ; Dai S; Overbury SH
    J Phys Chem B; 2005 Jun; 109(21):10676-85. PubMed ID: 16852296
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Preparation and catalytic properties of ZrO2-Al2O3 composite oxide supported nickel catalysts for methane reforming with carbon dioxide.
    Hao ZP; Hu C; Jiang Z; Lu GQ
    J Environ Sci (China); 2004; 16(2):316-20. PubMed ID: 15137662
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Refractive index controlled plasmon tuning of Au nanoparticles in SiO2-ZrO2 film matrices.
    De S; Medda SK; De G
    J Nanosci Nanotechnol; 2008 Aug; 8(8):3868-76. PubMed ID: 19049143
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Electrooxidation of CO on uniform arrays of Au nanoparticles: effects of particle size and interparticle spacing.
    Kumar S; Zou S
    Langmuir; 2009 Jan; 25(1):574-81. PubMed ID: 19063641
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Immobilization of myoglobin on phosphate and phosphonate grafted-zirconia nanoparticles.
    Bellezza F; Cipiciani A; Quotadamo MA
    Langmuir; 2005 Nov; 21(24):11099-104. PubMed ID: 16285777
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Platinum covering of gold nanoparticles for utilization enhancement of Pt in electrocatalysts.
    Zhao D; Xu BQ
    Phys Chem Chem Phys; 2006 Nov; 8(43):5106-14. PubMed ID: 17091161
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ferric hydroxide supported gold subnano clusters or quantum dots: enhanced catalytic performance in chemoselective hydrogenation.
    Liu L; Qiao B; Ma Y; Zhang J; Deng Y
    Dalton Trans; 2008 May; (19):2542-8. PubMed ID: 18443696
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 13.