These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
243 related articles for article (PubMed ID: 16852166)
1. Remarkable nanosize effect of zirconia in Au/ZrO2 catalyst for CO oxidation. Zhang X; Wang H; Xu BQ J Phys Chem B; 2005 May; 109(19):9678-83. PubMed ID: 16852166 [TBL] [Abstract][Full Text] [Related]
2. Support effect in high activity gold catalysts for CO oxidation. Comotti M; Li WC; Spliethoff B; Schüth F J Am Chem Soc; 2006 Jan; 128(3):917-24. PubMed ID: 16417382 [TBL] [Abstract][Full Text] [Related]
3. Origin of Oxide sensitivity in gold-based catalysts: a first principle study of CO oxidation over Au supported on monoclinic and tetragonal ZrO2. Wang CM; Fan KN; Liu ZP J Am Chem Soc; 2007 Mar; 129(9):2642-7. PubMed ID: 17290994 [TBL] [Abstract][Full Text] [Related]
4. Yolk-shell gold nanoparticles as model materials for support-effect studies in heterogeneous catalysis: Au, @C and Au, @ZrO2 for CO oxidation as an example. Galeano C; Güttel R; Paul M; Arnal P; Lu AH; Schüth F Chemistry; 2011 Jul; 17(30):8434-9. PubMed ID: 21656585 [TBL] [Abstract][Full Text] [Related]
5. Oxidation of CO on gold supported catalysts prepared by laser vaporization: direct evidence of support contribution. Arrii S; Morfin F; Renouprez AJ; Rousset JL J Am Chem Soc; 2004 Feb; 126(4):1199-205. PubMed ID: 14746491 [TBL] [Abstract][Full Text] [Related]
6. Insights into the oxidation and decomposition of CO on Au/alpha-Fe2O3 and on alpha-Fe2O3 by coupled TG-FTIR. Zhong Z; Highfield J; Lin M; Teo J; Han YF Langmuir; 2008 Aug; 24(16):8576-82. PubMed ID: 18605709 [TBL] [Abstract][Full Text] [Related]
7. [Study on the spectra of Au/alpha-Fe2O3 catalysts modified by ZrO2 and Nb2O5 promoters]. Zhang FL; Zheng Q; Lin XY; Zhang HH; Li JW; Zhang Q Guang Pu Xue Yu Guang Pu Fen Xi; 2007 Apr; 27(4):781-4. PubMed ID: 17608198 [TBL] [Abstract][Full Text] [Related]
8. Modifications induced by pretreatments on Au/SBA-15 and their influence on the catalytic activity for low temperature CO oxidation. Rombi E; Cutrufello MG; Cannas C; Casu M; Gazzoli D; Occhiuzzi M; Monaci R; Ferino I Phys Chem Chem Phys; 2009 Jan; 11(3):593-602. PubMed ID: 19283278 [TBL] [Abstract][Full Text] [Related]
9. Preferential oxidation of CO in H2 over highly loaded Au/ZrO2 catalysts obtained by direct oxidation of bulk alloy. Lomello-Tafin M; Chaou AA; Morfin F; Caps V; Rousset JL Chem Commun (Camb); 2005 Jan; (3):388-90. PubMed ID: 15645047 [TBL] [Abstract][Full Text] [Related]
10. Catalytic performance of nanosized Pt-Au alloy catalyst in oxidation of methanol and toluene. Kim KJ; Kim YH; Ahn HG J Nanosci Nanotechnol; 2007 Nov; 7(11):3795-9. PubMed ID: 18047061 [TBL] [Abstract][Full Text] [Related]
11. Microstructured Au/TiO2 model catalyst systems. Kielbassa S; Kinne M; Behm RJ Langmuir; 2004 Aug; 20(16):6644-50. PubMed ID: 15274568 [TBL] [Abstract][Full Text] [Related]
12. On the morphology and stability of Au nanoparticles on TiO2(110) prepared from micelle-stabilized precursors. Kielbassa S; Häbich A; Schnaidt J; Bansmann J; Weigl F; Boyen HG; Ziemann P; Behm RJ Langmuir; 2006 Aug; 22(18):7873-80. PubMed ID: 16922577 [TBL] [Abstract][Full Text] [Related]
13. Evolution of catalytic activity of Au-Ag bimetallic nanoparticles on mesoporous support for CO oxidation. Wang AQ; Chang CM; Mou CY J Phys Chem B; 2005 Oct; 109(40):18860-7. PubMed ID: 16853427 [TBL] [Abstract][Full Text] [Related]
14. Preparation and comparison of supported gold nanocatalysts on anatase, brookite, rutile, and P25 polymorphs of TiO2 for catalytic oxidation of CO. Yan W; Chen B; Mahurin SM; Schwartz V; Mullins DR; Lupini AR; Pennycook SJ; Dai S; Overbury SH J Phys Chem B; 2005 Jun; 109(21):10676-85. PubMed ID: 16852296 [TBL] [Abstract][Full Text] [Related]
15. Preparation and catalytic properties of ZrO2-Al2O3 composite oxide supported nickel catalysts for methane reforming with carbon dioxide. Hao ZP; Hu C; Jiang Z; Lu GQ J Environ Sci (China); 2004; 16(2):316-20. PubMed ID: 15137662 [TBL] [Abstract][Full Text] [Related]
16. Refractive index controlled plasmon tuning of Au nanoparticles in SiO2-ZrO2 film matrices. De S; Medda SK; De G J Nanosci Nanotechnol; 2008 Aug; 8(8):3868-76. PubMed ID: 19049143 [TBL] [Abstract][Full Text] [Related]
17. Electrooxidation of CO on uniform arrays of Au nanoparticles: effects of particle size and interparticle spacing. Kumar S; Zou S Langmuir; 2009 Jan; 25(1):574-81. PubMed ID: 19063641 [TBL] [Abstract][Full Text] [Related]
18. Immobilization of myoglobin on phosphate and phosphonate grafted-zirconia nanoparticles. Bellezza F; Cipiciani A; Quotadamo MA Langmuir; 2005 Nov; 21(24):11099-104. PubMed ID: 16285777 [TBL] [Abstract][Full Text] [Related]
19. Platinum covering of gold nanoparticles for utilization enhancement of Pt in electrocatalysts. Zhao D; Xu BQ Phys Chem Chem Phys; 2006 Nov; 8(43):5106-14. PubMed ID: 17091161 [TBL] [Abstract][Full Text] [Related]
20. Ferric hydroxide supported gold subnano clusters or quantum dots: enhanced catalytic performance in chemoselective hydrogenation. Liu L; Qiao B; Ma Y; Zhang J; Deng Y Dalton Trans; 2008 May; (19):2542-8. PubMed ID: 18443696 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]