BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

281 related articles for article (PubMed ID: 16852224)

  • 21. Formation of PbS nanowire pine trees driven by screw dislocations.
    Lau YK; Chernak DJ; Bierman MJ; Jin S
    J Am Chem Soc; 2009 Nov; 131(45):16461-71. PubMed ID: 19845339
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Self-catalysis: a contamination-free, substrate-free growth mechanism for single-crystal nanowire and nanotube growth by chemical vapor deposition.
    Noor Mohammad S
    J Chem Phys; 2006 Sep; 125(9):094705. PubMed ID: 16965103
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Polymorph-tuned synthesis of α- and β-Bi2O3 nanowires and determination of their growth direction from polarized Raman single nanowire microscopy.
    In J; Yoon I; Seo K; Park J; Choo J; Lee Y; Kim B
    Chemistry; 2011 Jan; 17(4):1304-9. PubMed ID: 21243698
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Simple synthesis and size-dependent surface-enhanced Raman scattering of Ag nanostructures on TiO2 by thermal decomposition of silver nitrate at low temperature.
    Wang RC; Gao YS; Chen SJ
    Nanotechnology; 2009 Sep; 20(37):375605. PubMed ID: 19706939
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Low temperature synthesis and characterization of MgO/ZnO composite nanowire arrays.
    Shimpi P; Gao PX; Goberman DG; Ding Y
    Nanotechnology; 2009 Mar; 20(12):125608. PubMed ID: 19420477
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Fabrication and photoconductivity of macroscopically long coaxial structured Ag/Ag2S nanowires with different core-to-shell thickness ratios.
    Sun JL; Zhu JL; Zhao X; Bao Y
    Nanotechnology; 2011 Jan; 22(3):035202. PubMed ID: 21149957
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Silver nanocrystal-modified silicon nanowires as substrates for surface-enhanced Raman and hyper-Raman scattering.
    Leng W; Yasseri AA; Sharma S; Li Z; Woo HY; Vak D; Bazan GC; Kelley AM
    Anal Chem; 2006 Sep; 78(17):6279-82. PubMed ID: 16944914
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Fabrication of self-supported patterns of aligned beta-FeOOH nanowires by a low-temperature solution reaction.
    Xiong Y; Xie Y; Chen S; Li Z
    Chemistry; 2003 Oct; 9(20):4991-6. PubMed ID: 14562317
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Controlled synthesis of ultra-long AlN nanowires in different densities and in situ investigation of the physical properties of an individual AlN nanowire.
    Liu F; Su ZJ; Mo FY; Li L; Chen ZS; Liu QR; Chen J; Deng SZ; Xu NS
    Nanoscale; 2011 Feb; 3(2):610-8. PubMed ID: 21103529
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Room-temperature ultraviolet nanowire nanolasers.
    Huang MH; Mao S; Feick H; Yan H; Wu Y; Kind H; Weber E; Russo R; Yang P
    Science; 2001 Jun; 292(5523):1897-9. PubMed ID: 11397941
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Single-crystalline vanadium dioxide nanowires with rectangular cross sections.
    Guiton BS; Gu Q; Prieto AL; Gudiksen MS; Park H
    J Am Chem Soc; 2005 Jan; 127(2):498-9. PubMed ID: 15643854
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Modified thermodynamics in ionic liquids for controlled electrocrystallization of nanocubes, nanowires, and crystalline thin films of silver-tetracyanoquinodimethane.
    Zhao C; MacFarlane DR; Bond AM
    J Am Chem Soc; 2009 Nov; 131(44):16195-205. PubMed ID: 19831410
    [TBL] [Abstract][Full Text] [Related]  

  • 33. The temperature-controlled growth of In2O3 nanowires, nanotowers and ultra-long layered nanorods.
    Singh N; Zhang T; Lee PS
    Nanotechnology; 2009 May; 20(19):195605. PubMed ID: 19420644
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Growth of silver nanowires from solutions: a cyclic penta-twinned-crystal growth mechanism.
    Zhang SH; Jiang ZY; Xie ZX; Xu X; Huang RB; Zheng LS
    J Phys Chem B; 2005 May; 109(19):9416-21. PubMed ID: 16852129
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The controlled growth of single metallic and conducting polymer nanowires via gate-assisted electrochemical deposition.
    Hu Y; To AC; Yun M
    Nanotechnology; 2009 Jul; 20(28):285605. PubMed ID: 19550021
    [TBL] [Abstract][Full Text] [Related]  

  • 36. High-quality luminescent tellurium nanowires of several nanometers in diameter and high aspect ratio synthesized by a poly (vinyl pyrrolidone)-assisted hydrothermal process.
    Qian HS; Yu SH; Gong JY; Luo LB; Fei LF
    Langmuir; 2006 Apr; 22(8):3830-5. PubMed ID: 16584263
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Fabrication and field emission properties of boron nanowire bundles.
    Liu F; Liang WJ; Su ZJ; Xia JX; Deng SZ; Chen J; She JC; Xu NS; Tian JF; Shen CM; Gao HJ
    Ultramicroscopy; 2009 Apr; 109(5):447-50. PubMed ID: 19171433
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Synthesis, characterization, and electrochemical properties of Ag2V4O11 and AgVO3 1-D nano/microstructures.
    Zhang S; Li W; Li C; Chen J
    J Phys Chem B; 2006 Dec; 110(49):24855-63. PubMed ID: 17149905
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Photoinduced oxidation of water to oxygen in the ionic liquid BMIMBF4 as the counter reaction in the fabrication of exceptionally long semiconducting silver-tetracyanoquinodimethane nanowires.
    Zhao C; Bond AM
    J Am Chem Soc; 2009 Apr; 131(12):4279-87. PubMed ID: 19317503
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Controlled self-assembly of functional metal octaethylporphyrin 1 D nanowires by solution-phase precipitative method.
    So MH; Roy VA; Xu ZX; Chui SS; Yuen MY; Ho CM; Che CM
    Chem Asian J; 2008 Nov; 3(11):1968-78. PubMed ID: 18767102
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.