These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

425 related articles for article (PubMed ID: 16852288)

  • 1. Semiempirical equations for modeling solid-state kinetics based on a Maxwell-Boltzmann distribution of activation energies: applications to a polymorphic transformation under crystallization slurry conditions and to the thermal decomposition of AgMnO4 crystals.
    Skrdla PJ; Robertson RT
    J Phys Chem B; 2005 Jun; 109(21):10611-9. PubMed ID: 16852288
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A collision theory-based derivation of semiempirical equations for modeling dispersive kinetics and their application to a mixed-phase crystal decomposition.
    Skrdla PJ
    J Phys Chem A; 2006 Oct; 110(40):11494-500. PubMed ID: 17020262
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Crystallizations, solid-state phase transformations and dissolution behavior explained by dispersive kinetic models based on a Maxwell-Boltzmann distribution of activation energies: theory, applications, and practical limitations.
    Skrdla PJ
    J Phys Chem A; 2009 Aug; 113(33):9329-36. PubMed ID: 19719293
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A simple model for complex dissolution kinetics: a case study of norfloxacin.
    Skrdla PJ
    J Pharm Biomed Anal; 2007 Oct; 45(2):251-6. PubMed ID: 17662549
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Steady-state master equation methods.
    Green NJ; Bhatti ZA
    Phys Chem Chem Phys; 2007 Aug; 9(31):4275-90. PubMed ID: 17687476
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Description of desorption kinetics at the solid/solution interface based on the statistical rate theory.
    Azizian S; Bashiri H
    Langmuir; 2008 Nov; 24(22):13013-8. PubMed ID: 18950203
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hydrocarbon fuel effects in solid-oxide fuel cell operation: an experimental and modeling study of n-hexane pyrolysis.
    Randolph KL; Dean AM
    Phys Chem Chem Phys; 2007 Aug; 9(31):4245-58. PubMed ID: 17687473
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Kinetics of natural oxidant demand by permanganate in aquifer solids.
    Urynowicz MA; Balu B; Udayasankar U
    J Contam Hydrol; 2008 Feb; 96(1-4):187-94. PubMed ID: 18166244
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Solid-state kinetic models: basics and mathematical fundamentals.
    Khawam A; Flanagan DR
    J Phys Chem B; 2006 Sep; 110(35):17315-28. PubMed ID: 16942065
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A kinetic model to simulate protein crystal growth in an evaporation-based crystallization platform.
    Talreja S; Kenis PJ; Zukoski CF
    Langmuir; 2007 Apr; 23(8):4516-22. PubMed ID: 17367178
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Perturbed-chain equation of state for the solid phase.
    Cochran TW; Chiew YC
    J Chem Phys; 2006 Jun; 124(22):224901. PubMed ID: 16784308
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kinetics of solute adsorption at solid/solution interfaces: a theoretical development of the empirical pseudo-first and pseudo-second order kinetic rate equations, based on applying the statistical rate theory of interfacial transport.
    Rudzinski W; Plazinski W
    J Phys Chem B; 2006 Aug; 110(33):16514-25. PubMed ID: 16913785
    [TBL] [Abstract][Full Text] [Related]  

  • 13. How is oxygen incorporated into oxides? A comprehensive kinetic study of a simple solid-state reaction with SrTiO3 as a model material.
    Merkle R; Maier J
    Angew Chem Int Ed Engl; 2008; 47(21):3874-94. PubMed ID: 18425855
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Insights into the kinetics of semiconductor nanocrystal nucleation and growth.
    Rempel JY; Bawendi MG; Jensen KF
    J Am Chem Soc; 2009 Apr; 131(12):4479-89. PubMed ID: 19275244
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A skewed-momenta method to efficiently generate conformational-transition trajectories.
    MacFadyen J; Andricioaei I
    J Chem Phys; 2005 Aug; 123(7):074107. PubMed ID: 16229559
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A combined experimental and theoretical study of the reaction between methylglyoxal and OH/OD radical: OH regeneration.
    Baeza-Romero MT; Glowacki DR; Blitz MA; Heard DE; Pilling MJ; Rickard AR; Seakins PW
    Phys Chem Chem Phys; 2007 Aug; 9(31):4114-28. PubMed ID: 17687462
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Use of in situ FT-Raman spectroscopy to study the kinetics of the transformation of carbamazepine polymorphs.
    O'Brien LE; Timmins P; Williams AC; York P
    J Pharm Biomed Anal; 2004 Oct; 36(2):335-40. PubMed ID: 15496326
    [TBL] [Abstract][Full Text] [Related]  

  • 18. On the origins of approximations for stochastic chemical kinetics.
    Haseltine EL; Rawlings JB
    J Chem Phys; 2005 Oct; 123(16):164115. PubMed ID: 16268689
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Complementary use of model-free and modelistic methods in the analysis of solid-state kinetics.
    Khawam A; Flanagan DR
    J Phys Chem B; 2005 May; 109(20):10073-80. PubMed ID: 16852219
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Predicting polymorphic transformation curves using a logistic equation.
    Menon A; Bhandarkar S
    Int J Pharm; 2004 Nov; 286(1-2):125-9. PubMed ID: 15501009
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 22.