These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

91 related articles for article (PubMed ID: 1685229)

  • 21. Cerebrospinal fluid pulse waveform as an indicator of cerebral autoregulation.
    Portnoy HD; Chopp M; Branch C; Shannon MB
    J Neurosurg; 1982 May; 56(5):666-78. PubMed ID: 7069479
    [TBL] [Abstract][Full Text] [Related]  

  • 22. [Method for the quantitative evaluation of intracranial volumetric pulsation based on PV test data].
    Pal'tsev EI
    Fiziol Cheloveka; 1984; 10(6):1045-7. PubMed ID: 6526188
    [No Abstract]   [Full Text] [Related]  

  • 23. [Intracranial pressure pulse waveform: considerations about its origin and methods of estimating intracranial pressure dynamics].
    Hirai O; Handa H; Ishikawa M
    No To Shinkei; 1982 Nov; 34(11):1059-65. PubMed ID: 7159538
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Impact of cerebral perfusion pressure and autoregulation on intracranial dynamics: a modeling study.
    Giulioni M; Ursino M
    Neurosurgery; 1996 Nov; 39(5):1005-14; discussion 1014-5. PubMed ID: 8905758
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Cerebrospinal fluid pulse wave form analysis during hypercapnia and hypoxia.
    Portnoy HD; Chopp M
    Neurosurgery; 1981 Jul; 9(1):14-27. PubMed ID: 7279168
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Characterization of angiotensin-II effects on cerebral and ocular circulation by noninvasive methods.
    Krejcy K; Wolzt M; Kreuzer C; Breiteneder H; Schütz W; Eichler HG; Schmetterer L
    Br J Clin Pharmacol; 1997 May; 43(5):501-8. PubMed ID: 9159565
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Intracranial pressure, blood pressure, and pulse rate after occlusion of a middle cerebral artery in cats.
    Hayakawa T; Waltz AG
    J Neurosurg; 1975 Oct; 43(4):399-407. PubMed ID: 1159477
    [TBL] [Abstract][Full Text] [Related]  

  • 28. [A mathematical model of hemodynamic processes for distal pulse wave formation].
    Fedotov AA
    Biofizika; 2015; 60(2):343-7. PubMed ID: 26016031
    [TBL] [Abstract][Full Text] [Related]  

  • 29. [Mechanisms of formation of pulse variations in intracranial pressure].
    Moskalenko IuE; Kisliakov IuIa; Vaĭnshteĭn GB
    Fiziol Zh SSSR Im I M Sechenova; 1970 Mar; 56(3):384-91. PubMed ID: 5496314
    [No Abstract]   [Full Text] [Related]  

  • 30. [Relationship between the intracranial pressure, intracranial blood volume and total cerebral blood flow].
    Moskalenko IuE; Khil'ko VA; Vaĭnshteĭn GB; Nurguzhaev ES; Semernia VN
    Fiziol Zh SSSR Im I M Sechenova; 1983 Jan; 69(1):92-9. PubMed ID: 6825893
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Hemodynamic consequences of cerebral vasospasm on perforating arteries: a phantom model study.
    Soustiel JF; Levy E; Bibi R; Lukaschuk S; Manor D
    Stroke; 2001 Mar; 32(3):629-35. PubMed ID: 11239178
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A mathematical model of the relationship between cerebral blood volume and intracranial pressure changes: the generation of plateau waves.
    Ursino M; Di Giammarco P
    Ann Biomed Eng; 1991; 19(1):15-42. PubMed ID: 2035909
    [TBL] [Abstract][Full Text] [Related]  

  • 33. A mathematical model of cerebral circulation and oxygen supply.
    Jung A; Faltermeier R; Rothoerl R; Brawanski A
    J Math Biol; 2005 Nov; 51(5):491-507. PubMed ID: 16195926
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Precursor cerebral circulation models.
    Roller ML; Clark ME
    J Biomech; 1969 Jul; 2(3):241-50. PubMed ID: 16335087
    [No Abstract]   [Full Text] [Related]  

  • 35. Relationships among intracranial pressure, blood pressure, and superficial cerebral vasculature after experimental occlusion of one middle cerebral artery.
    Hayakawa T; Waltz AG; Hansen T
    Stroke; 1977; 8(4):426-32. PubMed ID: 898237
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Role of NO in the O2 and CO2 responsiveness of cerebral and ocular circulation in humans.
    Schmetterer L; Findl O; Strenn K; Graselli U; Kastner J; Eichler HG; Wolzt M
    Am J Physiol; 1997 Dec; 273(6):R2005-12. PubMed ID: 9435655
    [TBL] [Abstract][Full Text] [Related]  

  • 37. ICP and CBF regulation: a new hypothesis to explain the "windkessel" phenomenon.
    Carmelo A; Ficola A; Fravolini ML; La Cava M; Maira G; Mangiola A
    Acta Neurochir Suppl; 2002; 81():112-6. PubMed ID: 12168279
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Cerebral Haemodynamics: Effects of Systemic Arterial Pulsatile Function and Hypertension.
    Avolio A; Kim MO; Adji A; Gangoda S; Avadhanam B; Tan I; Butlin M
    Curr Hypertens Rep; 2018 Mar; 20(3):20. PubMed ID: 29556793
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Modeling blood flow circulation in intracranial arterial networks: a comparative 3D/1D simulation study.
    Grinberg L; Cheever E; Anor T; Madsen JR; Karniadakis GE
    Ann Biomed Eng; 2011 Jan; 39(1):297-309. PubMed ID: 20661645
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The influence of central arterial compliance on cerebrovascular hemodynamics: insights from endurance training intervention.
    Tomoto T; Sugawara J; Nogami Y; Aonuma K; Maeda S
    J Appl Physiol (1985); 2015 Sep; 119(5):445-51. PubMed ID: 26139214
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.