These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

157 related articles for article (PubMed ID: 16852326)

  • 1. Electrooxidation mechanisms and discharge characteristics of borohydride on different catalytic metal surfaces.
    Dong H; Feng R; Ai X; Cao Y; Yang H; Cha C
    J Phys Chem B; 2005 Jun; 109(21):10896-901. PubMed ID: 16852326
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Segmented Pt/Ru, Pt/Ni, and Pt/RuNi nanorods as model bifunctional catalysts for methanol oxidation.
    Liu F; Lee JY; Zhou WJ
    Small; 2006 Jan; 2(1):121-8. PubMed ID: 17193567
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structure sensitivity of methanol electrooxidation on transition metals.
    Ferrin P; Mavrikakis M
    J Am Chem Soc; 2009 Oct; 131(40):14381-9. PubMed ID: 19754206
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of surface composition on electronic structure, stability, and electrocatalytic properties of Pt-transition metal alloys: Pt-skin versus Pt-skeleton surfaces.
    Stamenkovic VR; Mun BS; Mayrhofer KJ; Ross PN; Markovic NM
    J Am Chem Soc; 2006 Jul; 128(27):8813-9. PubMed ID: 16819874
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Characterization and methanol electrooxidation studies of Pt(111)/Os surfaces prepared by spontaneous deposition.
    Johnston CM; Strbac S; Lewera A; Sibert E; Wieckowski A
    Langmuir; 2006 Sep; 22(19):8229-40. PubMed ID: 16952267
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Catalytic activity of platinum on ruthenium electrodes with modified (electro)chemical states.
    Park KW; Sung YE
    J Phys Chem B; 2005 Jul; 109(28):13585-9. PubMed ID: 16852701
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A first-principle calculation of sulfur oxidation on metallic Ni(111) and Pt(111), and bimetallic Ni@Pt(111) and Pt@Ni(111) surfaces.
    Yeh CH; Ho JJ
    Chemphyschem; 2012 Sep; 13(13):3194-203. PubMed ID: 22740096
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ni-Zr alloys: relationship between surface characteristics and electrocatalytic behavior.
    Angelini E; Antonione C; Baricco M; Daolio S; Fabrizio M; Rosalbino F
    Rapid Commun Mass Spectrom; 2000; 14(9):800-7. PubMed ID: 10825019
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bipolar electrochemical mechanism for the propulsion of catalytic nanomotors in hydrogen peroxide solutions.
    Wang Y; Hernandez RM; Bartlett DJ; Bingham JM; Kline TR; Sen A; Mallouk TE
    Langmuir; 2006 Dec; 22(25):10451-6. PubMed ID: 17129015
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Enhancing the activity and tuning the mechanism of formic acid oxidation at tetrahexahedral Pt nanocrystals by Au decoration.
    Liu HX; Tian N; Brandon MP; Pei J; Huangfu ZC; Zhan C; Zhou ZY; Hardacre C; Lin WF; Sun SG
    Phys Chem Chem Phys; 2012 Dec; 14(47):16415-23. PubMed ID: 23131726
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Surface Pourbaix diagrams and oxygen reduction activity of Pt, Ag and Ni(111) surfaces studied by DFT.
    Hansen HA; Rossmeisl J; Nørskov JK
    Phys Chem Chem Phys; 2008 Jul; 10(25):3722-30. PubMed ID: 18563233
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Manipulation of electrocatalytic reaction pathways through surface chemistry: in situ Fourier transform infrared spectroscopic studies of 1,3-butanediol oxidation on a Pt surface modified with Sb and S adatoms.
    Wu QH; Li NH; Sun SG
    J Phys Chem B; 2006 Jun; 110(23):11383-90. PubMed ID: 16771410
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamics of surface catalyzed reactions; the roles of surface defects, surface diffusion, and hot electrons.
    Somorjai GA; Bratlie KM; Montano MO; Park JY
    J Phys Chem B; 2006 Oct; 110(40):20014-22. PubMed ID: 17020389
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhanced electrochemical activity of redox-labels in multi-layered protein films on indium tin oxide nanoparticle-based electrode.
    Yang XQ; Guo LH
    Anal Chim Acta; 2009 Jan; 632(1):15-20. PubMed ID: 19100877
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Syntheses and electronic structures of one-electron-oxidized group 10 metal(II)-(disalicylidene)diamine complexes (metal = Ni, Pd, Pt).
    Shimazaki Y; Yajima T; Tani F; Karasawa S; Fukui K; Naruta Y; Yamauchi O
    J Am Chem Soc; 2007 Mar; 129(9):2559-68. PubMed ID: 17290991
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Preparation of carbon-supported core-shell Au-Pt nanoparticles for methanol oxidation reaction: The promotional effect of the Au core.
    Zeng J; Yang J; Lee JY; Zhou W
    J Phys Chem B; 2006 Dec; 110(48):24606-11. PubMed ID: 17134221
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Scanning electrochemical mapping of spatially localized electrochemical reactions induced by surface potential gradients.
    Jayaraman S; May EL; Hillier AC
    Langmuir; 2006 Dec; 22(25):10322-8. PubMed ID: 17128999
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrooxidation of CO(ad) intermediated from methanol oxidation on polycrystalline Pt electrode.
    Xu W; Lu T; Liu C; Xing W
    J Phys Chem B; 2006 Mar; 110(10):4802-7. PubMed ID: 16526717
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Noble metal-free hydrazine fuel cell catalysts: EPOC effect in competing chemical and electrochemical reaction pathways.
    Sanabria-Chinchilla J; Asazawa K; Sakamoto T; Yamada K; Tanaka H; Strasser P
    J Am Chem Soc; 2011 Apr; 133(14):5425-31. PubMed ID: 21425793
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis of ordered macroporous Pt/Ru nanocomposites for the electrooxidation of methanol.
    Zhang D; Ding Y; Gao W; Chen HY; Xia XH
    J Nanosci Nanotechnol; 2008 Feb; 8(2):979-85. PubMed ID: 18464437
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.