These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

546 related articles for article (PubMed ID: 16852353)

  • 21. Preparation and properties of ternary ZnMgO nanowires.
    Zhi M; Zhu L; Ye Z; Wang F; Zhao B
    J Phys Chem B; 2005 Dec; 109(50):23930-4. PubMed ID: 16375380
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Synthesis of double-walled carbon nanotubes by catalytic chemical vapor deposition and their field emission properties.
    Lee YD; Lee HJ; Han JH; Yoo JE; Lee YH; Kim JK; Nahm S; Ju BK
    J Phys Chem B; 2006 Mar; 110(11):5310-4. PubMed ID: 16539462
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Fabrication and optical property of silicon oxide layer coated semiconductor gallium nitride nanowires.
    Zhang J; Zhang L; Jiang F; Yang Y; Li J
    J Phys Chem B; 2005 Jan; 109(1):151-4. PubMed ID: 16850998
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Fabrication and field emission properties of boron nanowire bundles.
    Liu F; Liang WJ; Su ZJ; Xia JX; Deng SZ; Chen J; She JC; Xu NS; Tian JF; Shen CM; Gao HJ
    Ultramicroscopy; 2009 Apr; 109(5):447-50. PubMed ID: 19171433
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Optical and field-emission properties of ZnO nanostructures deposited using high-pressure pulsed laser deposition.
    Premkumar T; Zhou YS; Lu YF; Baskar K
    ACS Appl Mater Interfaces; 2010 Oct; 2(10):2863-9. PubMed ID: 20882957
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Growth of gallium nitride and indium nitride nanowires on conductive and flexible carbon cloth substrates.
    Yang Y; Ling Y; Wang G; Lu X; Tong Y; Li Y
    Nanoscale; 2013 Mar; 5(5):1820-4. PubMed ID: 23376979
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Size effect on the physical properties of CdS thin films prepared by integrated physical-chemical approach.
    Sathyamoorthy R; Sudhagar P; Chandramohan S; Pal U
    J Nanosci Nanotechnol; 2008 Dec; 8(12):6481-6. PubMed ID: 19205226
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Synthesis and characterization of silicon nanowires on mesophase carbon microbead substrates by chemical vapor deposition.
    Li WN; Ding YS; Yuan J; Gomez S; Suib SL; Galasso FS; Dicarlo JF
    J Phys Chem B; 2005 Mar; 109(8):3291-7. PubMed ID: 16851355
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Synthesis of long indium nitride nanowires with uniform diameters in large quantities.
    Luo S; Zhou W; Zhang Z; Liu L; Dou X; Wang J; Zhao X; Liu D; Gao Y; Song L; Xiang Y; Zhou J; Xie S
    Small; 2005 Oct; 1(10):1004-9. PubMed ID: 17193386
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Field emission studies on electrochemically synthesized ZnO nanowires.
    Jamali Sheini F; Joag DS; More MA
    Ultramicroscopy; 2009 Apr; 109(5):418-22. PubMed ID: 19162399
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Vapor-liquid-solid growth of one-dimensional tin sulfide (SnS) nanostructures with promising field emission behavior.
    Suryawanshi SR; Warule SS; Patil SS; Patil KR; More MA
    ACS Appl Mater Interfaces; 2014 Feb; 6(3):2018-25. PubMed ID: 24432697
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A simple solution route to single-crystalline Sb2O3 nanowires with rectangular cross sections.
    Deng Z; Tang F; Chen D; Meng X; Cao L; Zou B
    J Phys Chem B; 2006 Sep; 110(37):18225-30. PubMed ID: 16970439
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Synthesis and electrical properties of ZnO nanowires.
    Xing X; Zheng K; Xu H; Fang F; Shen H; Zhang J; Zhu J; Ye C; Cao G; Sun D; Chen G
    Micron; 2006; 37(4):370-3. PubMed ID: 16376557
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Nitrogen-doped tungsten oxide nanowires: low-temperature synthesis on Si, and electrical, optical, and field-emission properties.
    Chang MT; Chou LJ; Chueh YL; Lee YC; Hsieh CH; Chen CD; Lan YW; Chen LJ
    Small; 2007 Apr; 3(4):658-64. PubMed ID: 17315263
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Synthesis and optical properties of S-doped ZnO nanostructures: nanonails and nanowires.
    Shen G; Cho JH; Yoo JK; Yi GC; Lee CJ
    J Phys Chem B; 2005 Mar; 109(12):5491-6. PubMed ID: 16851588
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The temperature-controlled growth of In2O3 nanowires, nanotowers and ultra-long layered nanorods.
    Singh N; Zhang T; Lee PS
    Nanotechnology; 2009 May; 20(19):195605. PubMed ID: 19420644
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Synthesis of ordered ultrathin ZnO nanowire bundles on an indium-tin oxide substrate.
    Fang F; Zhao D; Shen D; Zhang J; Li B
    Inorg Chem; 2008 Jan; 47(2):398-400. PubMed ID: 18095676
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Enhancing the field emission properties of Se-doped GaN nanowires.
    Li E; Wu G; Cui Z; Ma D; Shi W; Wang X
    Nanotechnology; 2016 Jul; 27(26):265707. PubMed ID: 27197556
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Direct-bandgap properties and evidence for ultraviolet lasing of hexagonal boron nitride single crystal.
    Watanabe K; Taniguchi T; Kanda H
    Nat Mater; 2004 Jun; 3(6):404-9. PubMed ID: 15156198
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Sol-gel template synthesis and photoluminescence of n- and p-type semiconductor oxide nanowires.
    Cao H; Qiu X; Liang Y; Zhang L; Zhao M; Zhu Q
    Chemphyschem; 2006 Feb; 7(2):497-501. PubMed ID: 16363017
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 28.