These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

291 related articles for article (PubMed ID: 16852439)

  • 81. Nanoscale investigation of photoinduced hydrophilicity variations in anatase and rutile nanopowders.
    Diamanti MV; Gadelrab KR; Pedeferri MP; Stefancich M; Pehkonen SO; Chiesa M
    Langmuir; 2013 Nov; 29(47):14512-8. PubMed ID: 24152147
    [TBL] [Abstract][Full Text] [Related]  

  • 82. Hydroxylapatite growth on single-crystal rutile substrates.
    Lindberg F; Heinrichs J; Ericson F; Thomsen P; Engqvist H
    Biomaterials; 2008 Aug; 29(23):3317-23. PubMed ID: 18474397
    [TBL] [Abstract][Full Text] [Related]  

  • 83. Preparation and characterization of terraced surfaces of low-index faces of anatase, rutile, and brookite.
    Lu Y; Jaeckel B; Parkinson BA
    Langmuir; 2006 May; 22(10):4472-5. PubMed ID: 16649750
    [TBL] [Abstract][Full Text] [Related]  

  • 84. Synthesis and photocatalytic activity of stable nanocrystalline TiO(2) with high crystallinity and large surface area.
    Tian G; Fu H; Jing L; Tian C
    J Hazard Mater; 2009 Jan; 161(2-3):1122-30. PubMed ID: 18524477
    [TBL] [Abstract][Full Text] [Related]  

  • 85. Preparation of ligand-free TiO2 (anatase) nanoparticles through a nonaqueous process and their surface functionalization.
    Kotsokechagia T; Cellesi F; Thomas A; Niederberger M; Tirelli N
    Langmuir; 2008 Jun; 24(13):6988-97. PubMed ID: 18522445
    [TBL] [Abstract][Full Text] [Related]  

  • 86. Synthesis of titanium dioxide nanoparticles with mesoporous anatase wall and high photocatalytic activity.
    Peng T; Zhao D; Dai K; Shi W; Hirao K
    J Phys Chem B; 2005 Mar; 109(11):4947-52. PubMed ID: 16863152
    [TBL] [Abstract][Full Text] [Related]  

  • 87. Photocatalytic activity of TiO2 doped with boron and vanadium.
    Bettinelli M; Dallacasa V; Falcomer D; Fornasiero P; Gombac V; Montini T; Romanò L; Speghini A
    J Hazard Mater; 2007 Jul; 146(3):529-34. PubMed ID: 17521804
    [TBL] [Abstract][Full Text] [Related]  

  • 88. Preparation and photocatalytic activity of nanoglued Sn-doped TiO2.
    Li X; Xiong R; Wei G
    J Hazard Mater; 2009 May; 164(2-3):587-91. PubMed ID: 18834665
    [TBL] [Abstract][Full Text] [Related]  

  • 89. Controllable and repeatable synthesis of thermally stable anatase nanocrystal-silica composites with highly ordered hexagonal mesostructures.
    Dong W; Sun Y; Lee CW; Hua W; Lu X; Shi Y; Zhang S; Chen J; Zhao D
    J Am Chem Soc; 2007 Nov; 129(45):13894-904. PubMed ID: 17941637
    [TBL] [Abstract][Full Text] [Related]  

  • 90. Recombination pathways in the Degussa P25 formulation of TiO2: surface versus lattice mechanisms.
    Hurum DC; Gray KA; Rajh T; Thurnauer MC
    J Phys Chem B; 2005 Jan; 109(2):977-80. PubMed ID: 16866468
    [TBL] [Abstract][Full Text] [Related]  

  • 91. Synthesis, characterization, and visible light activity of new nanoparticle photocatalysts based on silver, carbon, and sulfur-doped TiO2.
    Hamal DB; Klabunde KJ
    J Colloid Interface Sci; 2007 Jul; 311(2):514-22. PubMed ID: 17418857
    [TBL] [Abstract][Full Text] [Related]  

  • 92. TiO2-assisted degradation of a perfluorinated surfactant in aqueous solutions treated by gliding arc discharge.
    Marouf-Khelifa K; Abdelmalek F; Khelifa A; Addou A
    Chemosphere; 2008 Feb; 70(11):1995-2001. PubMed ID: 17980903
    [TBL] [Abstract][Full Text] [Related]  

  • 93. Influence of TiO2 on prebiotic thermal synthesis of the Gly-Gln polymer.
    Leyton P; Saladino R; Crestini C; Campos-Vallette M; Paipa C; Berríos A; Fuentes S; Zárate RA
    Amino Acids; 2012 Jun; 42(6):2079-88. PubMed ID: 21607746
    [TBL] [Abstract][Full Text] [Related]  

  • 94. One-pot synthesis of imines from nitroaromatics and alcohols by tandem photocatalytic and catalytic reactions on Degussa (Evonik) P25 titanium dioxide.
    Hirakawa H; Katayama M; Shiraishi Y; Sakamoto H; Wang K; Ohtani B; Ichikawa S; Tanaka S; Hirai T
    ACS Appl Mater Interfaces; 2015 Feb; 7(6):3797-806. PubMed ID: 25621386
    [TBL] [Abstract][Full Text] [Related]  

  • 95. Further understanding of the adsorption mechanism of N719 sensitizer on anatase TiO2 films for DSSC applications using vibrational spectroscopy and confocal Raman imaging.
    Lee KE; Gomez MA; Elouatik S; Demopoulos GP
    Langmuir; 2010 Jun; 26(12):9575-83. PubMed ID: 20429522
    [TBL] [Abstract][Full Text] [Related]  

  • 96. Adsorption of Molybdenum on Titania from Aqueous Solutions.
    El Shafei GM; Philip CA; Moussa NA
    J Colloid Interface Sci; 2001 Feb; 234(1):142-148. PubMed ID: 11161501
    [TBL] [Abstract][Full Text] [Related]  

  • 97. Phase transformations during sintering of titania nanoparticles.
    Koparde VN; Cummings PT
    ACS Nano; 2008 Aug; 2(8):1620-4. PubMed ID: 19206364
    [TBL] [Abstract][Full Text] [Related]  

  • 98. N3-dye-induced visible laser anatase-to-rutile phase transition on mesoporous TiO2 films.
    Parussulo AL; Huila MF; Araki K; Toma HE
    Langmuir; 2011 Aug; 27(15):9094-9. PubMed ID: 21707061
    [TBL] [Abstract][Full Text] [Related]  

  • 99. Direct modification with tungstophosphoric acid of mesoporous titania synthesized by urea-templated sol-gel reactions.
    Fuchs VM; Soto EL; Blanco MN; Pizzio LR
    J Colloid Interface Sci; 2008 Nov; 327(2):403-11. PubMed ID: 18790494
    [TBL] [Abstract][Full Text] [Related]  

  • 100. Molecular-level understanding of the photocatalytic activity difference between anatase and rutile nanoparticles.
    Kim W; Tachikawa T; Moon GH; Majima T; Choi W
    Angew Chem Int Ed Engl; 2014 Dec; 53(51):14036-41. PubMed ID: 25314627
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 15.