BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

208 related articles for article (PubMed ID: 16852492)

  • 1. Activation energy of electron transport in dye-sensitized TiO2 solar cells.
    Boschloo G; Hagfeldt A
    J Phys Chem B; 2005 Jun; 109(24):12093-8. PubMed ID: 16852492
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Illumination intensity dependence of the photovoltage in nanostructured TiO2 dye-sensitized solar cells.
    Salvador P; Hidalgo MG; Zaban A; Bisquert J
    J Phys Chem B; 2005 Aug; 109(33):15915-26. PubMed ID: 16853020
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Interpretation of apparent activation energies for electron transport in dye-sensitized nanocrystalline solar cells.
    Peter LM; Walker AB; Boschloo G; Hagfeldt A
    J Phys Chem B; 2006 Jul; 110(28):13694-9. PubMed ID: 16836312
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Spatial electron distribution and its origin in the nanoporous TiO2 network of a dye solar cell.
    Würfel U; Wagner J; Hinsch A
    J Phys Chem B; 2005 Nov; 109(43):20444-8. PubMed ID: 16853645
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dye-sensitized solar cells based on oriented TiO2 nanotube arrays: transport, trapping, and transfer of electrons.
    Jennings JR; Ghicov A; Peter LM; Schmuki P; Walker AB
    J Am Chem Soc; 2008 Oct; 130(40):13364-72. PubMed ID: 18774820
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Calculation of activation energies for transport and recombination in mesoporous TiO2/dye/electrolyte films--taking into account surface charge shifts with temperature.
    O'Regan BC; Durrant JR
    J Phys Chem B; 2006 May; 110(17):8544-7. PubMed ID: 16640403
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Determination of rate constants for charge transfer and the distribution of semiconductor and electrolyte electronic energy levels in dye-sensitized solar cells by open-circuit photovoltage decay method.
    Bisquert J; Zaban A; Greenshtein M; Mora-Seró I
    J Am Chem Soc; 2004 Oct; 126(41):13550-9. PubMed ID: 15479112
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Direct measurement of the temperature coefficient of the electron quasi-fermi level in dye-sensitized nanocrystalline solar cells using a titanium sensor electrode.
    Lobato K; Peter LM
    J Phys Chem B; 2006 Nov; 110(43):21920-3. PubMed ID: 17064159
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Recombination and transport processes in dye-sensitized solar cells investigated under working conditions.
    Nissfolk J; Fredin K; Hagfeldt A; Boschloo G
    J Phys Chem B; 2006 Sep; 110(36):17715-8. PubMed ID: 16956254
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Determination of the density and energetic distribution of electron traps in dye-sensitized nanocrystalline solar cells.
    Bailes M; Cameron PJ; Lobato K; Peter LM
    J Phys Chem B; 2005 Aug; 109(32):15429-35. PubMed ID: 16852957
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A strategy to increase the efficiency of the dye-sensitized TiO2 solar cells operated by photoexcitation of dye-to-TiO2 charge-transfer bands.
    Tae EL; Lee SH; Lee JK; Yoo SS; Kang EJ; Yoon KB
    J Phys Chem B; 2005 Dec; 109(47):22513-22. PubMed ID: 16853932
    [TBL] [Abstract][Full Text] [Related]  

  • 12. "Sticky electrons" transport and interfacial transfer of electrons in the dye-sensitized solar cell.
    Peter L
    Acc Chem Res; 2009 Nov; 42(11):1839-47. PubMed ID: 19637905
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Microstructure design of nanoporous TiO2 photoelectrodes for dye-sensitized solar cell modules.
    Hu L; Dai S; Weng J; Xiao S; Sui Y; Huang Y; Chen S; Kong F; Pan X; Liang L; Wang K
    J Phys Chem B; 2007 Jan; 111(2):358-62. PubMed ID: 17214486
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A numerical model for charge transport and recombination in dye-sensitized solar cells.
    Anta JA; Casanueva F; Oskam G
    J Phys Chem B; 2006 Mar; 110(11):5372-8. PubMed ID: 16539471
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Inhomogeneity of electron injection rates in dye-sensitized TiO2: comparison of the mesoporous film and single nanoparticle behavior.
    Bell TD; Pagba C; Myahkostupov M; Hofkens J; Piotrowiak P
    J Phys Chem B; 2006 Dec; 110(50):25314-21. PubMed ID: 17165977
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characteristics of high efficiency dye-sensitized solar cells.
    Wang Q; Ito S; Grätzel M; Fabregat-Santiago F; Mora-Seró I; Bisquert J; Bessho T; Imai H
    J Phys Chem B; 2006 Dec; 110(50):25210-21. PubMed ID: 17165965
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Zinc-doping in TiO2 films to enhance electron transport in dye-sensitized solar cells under low-intensity illumination.
    Wang KP; Teng H
    Phys Chem Chem Phys; 2009 Nov; 11(41):9489-96. PubMed ID: 19830333
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Grain morphology and trapping effects on electron transport in dye-sensitized nanocrystalline solar cells.
    Cass MJ; Walker AB; Martinez D; Peter LM
    J Phys Chem B; 2005 Mar; 109(11):5100-7. PubMed ID: 16863172
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of surface area on charge transport and recombination in dye-sensitized TiO2 solar cells.
    Zhu K; Kopidakis N; Neale NR; van de Lagemaat J; Frank AJ
    J Phys Chem B; 2006 Dec; 110(50):25174-80. PubMed ID: 17165961
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of photovoltage decay transients in dye-sensitized solar cells.
    Walker AB; Peter LM; Lobato K; Cameron PJ
    J Phys Chem B; 2006 Dec; 110(50):25504-7. PubMed ID: 17165999
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 11.