BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 16852513)

  • 1. The determination of the Förster distance (R0) for phenanthrene and anthracene derivatives in poly(methyl methacrylate) films.
    Roller RS; Winnik MA
    J Phys Chem B; 2005 Jun; 109(25):12261-9. PubMed ID: 16852513
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Determination of the Förster distance in polymer films by fluorescence decay for donor dyes with a nonexponential decay profile.
    Felorzabihi N; Froimowicz P; Haley JC; Bardajee GR; Li B; Bovero E; van Veggel FC; Winnik MA
    J Phys Chem B; 2009 Feb; 113(8):2262-72. PubMed ID: 19182945
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Energy migration study of random immobile anthracene derivatives by time-resolved fluorescence anisotropy decays.
    Yang J; Roller RS; Winnik MA
    J Phys Chem B; 2006 Jun; 110(24):11739-45. PubMed ID: 16800471
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The orientation parameter for energy transfer in restricted geometries including block copolymer interfaces: a Monte Carlo study.
    Yang J; Winnik MA
    J Phys Chem B; 2005 Oct; 109(39):18408-17. PubMed ID: 16853370
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Experimental determination of the Förster distance for two commonly used bioluminescent resonance energy transfer pairs.
    Dacres H; Wang J; Dumancic MM; Trowell SC
    Anal Chem; 2010 Jan; 82(1):432-5. PubMed ID: 19957970
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Experimental and theoretical study of triplet energy transfer in rigid polymer films.
    Merkel PB; Dinnocenzo JP
    J Phys Chem A; 2008 Oct; 112(43):10790-800. PubMed ID: 18834093
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Distance and orientation dependence of excitation energy transfer: from molecular systems to metal nanoparticles.
    Saini S; Srinivas G; Bagchi B
    J Phys Chem B; 2009 Feb; 113(7):1817-32. PubMed ID: 19128043
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Donor-acceptor systems: energy transfer from CdS quantum dots/rods to Nile Red dye.
    Sadhu S; Patra A
    Chemphyschem; 2008 Oct; 9(14):2052-8. PubMed ID: 18756556
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Entanglement of polymer chains in ultrathin films.
    Itagaki H; Nishimura Y; Sagisaka E; Grohens Y
    Langmuir; 2006 Jan; 22(2):742-8. PubMed ID: 16401126
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Excitation energy transfer in ion pairs of polymethine cyanine dyes: efficiency and dynamics.
    Ponterini G; Fiorini M; Vanossi D; Tatikolov AS; Momicchioli F
    J Phys Chem A; 2006 Jun; 110(24):7527-38. PubMed ID: 16774193
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A revisitation of the Förster energy transfer near a metallic spherical nanoparticle: (1) Efficiency enhancement or reduction? (2) The control of the Förster radius of the unbounded medium. (3) The impact of the local density of states.
    Gonzaga-Galeana JA; Zurita-Sánchez JR
    J Chem Phys; 2013 Dec; 139(24):244302. PubMed ID: 24387365
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Influence of ethylene glycol and propylene glycol on polymer diffusion in poly(butyl acrylate-co-methyl methacrylate) latex films.
    Schroeder WF; Liu Y; Tomba JP; Soleimani M; Lau W; Winnik MA
    J Phys Chem B; 2010 Mar; 114(9):3085-94. PubMed ID: 20163098
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electronic energy migration on different time scales: concentration dependence of the time-resolved anisotropy and fluorescence quenching of Lumogen Red in poly(methyl methacrylate).
    Colby KA; Burdett JJ; Frisbee RF; Zhu L; Dillon RJ; Bardeen CJ
    J Phys Chem A; 2010 Mar; 114(10):3471-82. PubMed ID: 20170138
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Exciton migration by ultrafast Förster transfer in highly doped matrixes.
    Schlosser M; Lochbrunner S
    J Phys Chem B; 2006 Mar; 110(12):6001-9. PubMed ID: 16553409
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A comparison of crystalline- and graft polymer-based chemosensors.
    Broadwater SJ; Hickey MK; McQuade DT
    J Am Chem Soc; 2003 Sep; 125(37):11154-5. PubMed ID: 16220910
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Förster energy transfer from nonexponentially decaying donors.
    Czuper A; Gryczynski I; Kuśba J
    J Photochem Photobiol B; 2007 Jun; 87(3):200-8. PubMed ID: 17537640
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Beyond Förster resonance energy transfer in biological and nanoscale systems.
    Beljonne D; Curutchet C; Scholes GD; Silbey RJ
    J Phys Chem B; 2009 May; 113(19):6583-99. PubMed ID: 19331333
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Preparation and surface characterization of polymer nanoparticles designed for incorporation into hybrid materials.
    Fonseca T; Relógio P; Martinho JM; Farinha JP
    Langmuir; 2007 May; 23(10):5727-34. PubMed ID: 17417887
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Polymer-coated nanoparticles by adsorption of hydrophobically modified poly(N,N-dimethylacrylamide).
    Marcelo G; Martinho JM; Farinha JP
    J Phys Chem B; 2013 Mar; 117(12):3416-27. PubMed ID: 23496413
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Generalization of the Forster resonance energy transfer theory for quantum mechanical modulation of the donor-acceptor coupling.
    Jang S
    J Chem Phys; 2007 Nov; 127(17):174710. PubMed ID: 17994845
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.