These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 16852523)

  • 1. Carbon nanotube formation and growth via particle-particle interaction.
    Height MJ; Howard JB; Tester JW; Vander Sande JB
    J Phys Chem B; 2005 Jun; 109(25):12337-46. PubMed ID: 16852523
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Mechanisms of single-walled carbon nanotube nucleation, growth, and healing determined using QM/MD methods.
    Page AJ; Ohta Y; Irle S; Morokuma K
    Acc Chem Res; 2010 Oct; 43(10):1375-85. PubMed ID: 20954752
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A multiscale approach for modeling the early stage growth of single and multiwall carbon nanotubes produced by a metal-catalyzed synthesis process.
    Elliott JA; Hamm M; Shibuta Y
    J Chem Phys; 2009 Jan; 130(3):034704. PubMed ID: 19173534
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Molecular dynamics study of the catalyst particle size dependence on carbon nanotube growth.
    Ding F; Rosén A; Bolton K
    J Chem Phys; 2004 Aug; 121(6):2775-9. PubMed ID: 15281881
    [TBL] [Abstract][Full Text] [Related]  

  • 5. In situ nucleation of carbon nanotubes by the injection of carbon atoms into metal particles.
    Rodríguez-Manzo JA; Terrones M; Terrones H; Kroto HW; Sun L; Banhart F
    Nat Nanotechnol; 2007 May; 2(5):307-11. PubMed ID: 18654289
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Catalyst volume to surface area constraints for nucleating carbon nanotubes.
    Rümmeli MH; Kramberger C; Löffler M; Jost O; Bystrzejewski M; Grüneis A; Gemming T; Pompe W; Büchner B; Pichler T
    J Phys Chem B; 2007 Jul; 111(28):8234-41. PubMed ID: 17580861
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Graphitic encapsulation of catalyst particles in carbon nanotube production.
    Ding F; Rosén A; Campbell EE; Falk LK; Bolton K
    J Phys Chem B; 2006 Apr; 110(15):7666-70. PubMed ID: 16610858
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Particle-wire-tube mechanism for carbon nanotube evolution.
    Du G; Feng S; Zhao J; Song C; Bai S; Zhu Z
    J Am Chem Soc; 2006 Dec; 128(48):15405-14. PubMed ID: 17132007
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Critical oxide thickness for efficient single-walled carbon nanotube growth on silicon using thin SiO2 diffusion barriers.
    Simmons JM; Nichols BM; Marcus MS; Castellini OM; Hamers RJ; Eriksson MA
    Small; 2006 Jul; 2(7):902-9. PubMed ID: 17193143
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The formation of low-dimensional inorganic nanotube crystallites in carbon nanotubes.
    Wilson M
    J Chem Phys; 2006 Mar; 124(12):124706. PubMed ID: 16599717
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Orthogonal orientation control of carbon nanotube growth.
    Zhou W; Ding L; Yang S; Liu J
    J Am Chem Soc; 2010 Jan; 132(1):336-41. PubMed ID: 20000705
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Rapid growth of a single-walled carbon nanotube on an iron cluster: density-functional tight-binding molecular dynamics simulations.
    Ohta Y; Okamoto Y; Irle S; Morokuma K
    ACS Nano; 2008 Jul; 2(7):1437-44. PubMed ID: 19206312
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Growth of chiral single-walled carbon nanotube caps in the presence of a cobalt cluster.
    Gómez-Gualdrón DA; Balbuena PB
    Nanotechnology; 2009 May; 20(21):215601. PubMed ID: 19423932
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Quantum chemical molecular dynamics simulation of single-walled carbon nanotube cap nucleation on an iron particle.
    Ohta Y; Okamoto Y; Page AJ; Irle S; Morokuma K
    ACS Nano; 2009 Nov; 3(11):3413-20. PubMed ID: 19827761
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Diffusive growth of fullerenes and carbon nanotubes.
    Bunder JE; Hill JM
    J Chem Phys; 2009 Dec; 131(24):244703. PubMed ID: 20059095
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Catalyst design for carbon nanotube growth using atomistic modeling.
    Pint CL; Bozzolo G; Hauge R
    Nanotechnology; 2008 Oct; 19(40):405704. PubMed ID: 21832633
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A formation mechanism for catalytically grown helix-shaped graphite nanotubes.
    Amelinckx S; Zhang XB; Bernaerts D; Zhang XF; Ivanov V; Nagy JB
    Science; 1994 Jul; 265(5172):635-9. PubMed ID: 17752760
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Nanotube nucleation versus carbon-catalyst adhesion--probed by molecular dynamics simulations.
    Ribas MA; Ding F; Balbuena PB; Yakobson BI
    J Chem Phys; 2009 Dec; 131(22):224501. PubMed ID: 20001051
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Oxide-driven carbon nanotube growth in supported catalyst CVD.
    Rümmeli MH; Schäffel F; Kramberger C; Gemming T; Bachmatiuk A; Kalenczuk RJ; Rellinghaus B; Büchner B; Pichler T
    J Am Chem Soc; 2007 Dec; 129(51):15772-3. PubMed ID: 18052382
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular beam-controlled nucleation and growth of vertically aligned single-wall carbon nanotube arrays.
    Eres G; Kinkhabwala AA; Cui H; Geohegan DB; Puretzky AA; Lowndes DH
    J Phys Chem B; 2005 Sep; 109(35):16684-94. PubMed ID: 16853123
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.