These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

80 related articles for article (PubMed ID: 16852567)

  • 1. Single-molecule tracking of sub-millisecond domain motion in calmodulin.
    Slaughter BD; Bieber-Urbauer RJ; Johnson CK
    J Phys Chem B; 2005 Jul; 109(26):12658-62. PubMed ID: 16852567
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Conformational substates of calmodulin revealed by single-pair fluorescence resonance energy transfer: influence of solution conditions and oxidative modification.
    Slaughter BD; Unruh JR; Allen MW; Bieber Urbauer RJ; Johnson CK
    Biochemistry; 2005 Mar; 44(10):3694-707. PubMed ID: 15751946
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sampling unfolding intermediates in calmodulin by single-molecule spectroscopy.
    Slaughter BD; Unruh JR; Price ES; Huynh JL; Bieber Urbauer RJ; Johnson CK
    J Am Chem Soc; 2005 Aug; 127(34):12107-14. PubMed ID: 16117552
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Revealing two-state protein-protein interactions of calmodulin by single-molecule spectroscopy.
    Liu R; Hu D; Tan X; Lu HP
    J Am Chem Soc; 2006 Aug; 128(31):10034-42. PubMed ID: 16881631
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Differential binding of calmodulin domains to constitutive and inducible nitric oxide synthase enzymes.
    Spratt DE; Taiakina V; Palmer M; Guillemette JG
    Biochemistry; 2007 Jul; 46(28):8288-300. PubMed ID: 17580957
    [TBL] [Abstract][Full Text] [Related]  

  • 6. FRET conformational analysis of calmodulin binding to nitric oxide synthase peptides and enzymes.
    Spratt DE; Taiakina V; Palmer M; Guillemette JG
    Biochemistry; 2008 Nov; 47(46):12006-17. PubMed ID: 18947187
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ligand-dependent equilibrium fluctuations of single calmodulin molecules.
    Junker JP; Ziegler F; Rief M
    Science; 2009 Jan; 323(5914):633-7. PubMed ID: 19179531
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evidence for domain motion in proteins affecting global diffusion properties: a nuclear magnetic resonance study.
    Shapiro YE; Meirovitch E
    J Phys Chem B; 2009 May; 113(19):7003-11. PubMed ID: 19385637
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interdomain cooperativity of calmodulin bound to melittin preferentially increases calcium affinity of sites I and II.
    Newman RA; Van Scyoc WS; Sorensen BR; Jaren OR; Shea MA
    Proteins; 2008 Jun; 71(4):1792-812. PubMed ID: 18175310
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Calcium binding to calmodulin mutants having domain-specific effects on the regulation of ion channels.
    VanScyoc WS; Newman RA; Sorensen BR; Shea MA
    Biochemistry; 2006 Dec; 45(48):14311-24. PubMed ID: 17128970
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Calcium occupancy of N-terminal sites within calmodulin induces inhibition of the ryanodine receptor calcium release channel.
    Boschek CB; Jones TE; Squier TC; Bigelow DJ
    Biochemistry; 2007 Sep; 46(37):10621-8. PubMed ID: 17713923
    [TBL] [Abstract][Full Text] [Related]  

  • 12. FRET analysis of protein conformational change through position-specific incorporation of fluorescent amino acids.
    Kajihara D; Abe R; Iijima I; Komiyama C; Sisido M; Hohsaka T
    Nat Methods; 2006 Nov; 3(11):923-9. PubMed ID: 17060916
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Increasing the resolution of single pair fluorescence resonance energy transfer measurements in solution via molecular cytometry.
    Werner JH; McCarney ER; Keller RA; Plaxco KW; Goodwin PM
    Anal Chem; 2007 May; 79(9):3509-13. PubMed ID: 17385843
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Fluorescence quenching studies of structure and dynamics in calmodulin-eNOS complexes.
    Arnett DC; Persechini A; Tran QK; Black DJ; Johnson CK
    FEBS Lett; 2015 May; 589(11):1173-8. PubMed ID: 25871521
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Studying 3D subdomains of proteins at the nanometer scale using fluorescence spectroscopy.
    Viallet PM; Vo-Dinh T
    Methods Mol Biol; 2005; 300():165-89. PubMed ID: 15657484
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Single molecule fluorescence studies of surface-adsorbed fibronectin.
    Antia M; Islas LD; Boness DA; Baneyx G; Vogel V
    Biomaterials; 2006 Feb; 27(5):679-90. PubMed ID: 16095684
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Freezing a single distal motion in dihydrofolate reductase.
    Sergi A; Watney JB; Wong KF; Hammes-Schiffer S
    J Phys Chem B; 2006 Feb; 110(5):2435-41. PubMed ID: 16471835
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Inherent flexibility and protein function: The open/closed conformational transition in the N-terminal domain of calmodulin.
    Tripathi S; Portman JJ
    J Chem Phys; 2008 May; 128(20):205104. PubMed ID: 18513047
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The conformational plasticity of calmodulin upon calcium complexation gives a model of its interaction with the oedema factor of Bacillus anthracis.
    Laine E; Yoneda JD; Blondel A; Malliavin TE
    Proteins; 2008 Jun; 71(4):1813-29. PubMed ID: 18175311
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Dissecting the non-specific and specific components of the initial folding reaction of barstar by multi-site FRET measurements.
    Sinha KK; Udgaonkar JB
    J Mol Biol; 2007 Jul; 370(2):385-405. PubMed ID: 17512542
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.