These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

447 related articles for article (PubMed ID: 16852568)

  • 1. Catalysis with transition metal nanoparticles in colloidal solution: nanoparticle shape dependence and stability.
    Narayanan R; El-Sayed MA
    J Phys Chem B; 2005 Jul; 109(26):12663-76. PubMed ID: 16852568
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of catalysis on the stability of metallic nanoparticles: Suzuki reaction catalyzed by PVP-palladium nanoparticles.
    Narayanan R; El-Sayed MA
    J Am Chem Soc; 2003 Jul; 125(27):8340-7. PubMed ID: 12837106
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sustainable preparation of supported metal nanoparticles and their applications in catalysis.
    Campelo JM; Luna D; Luque R; Marinas JM; Romero AA
    ChemSusChem; 2009; 2(1):18-45. PubMed ID: 19142903
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Shape-dependent catalytic activity of silver nanoparticles for the oxidation of styrene.
    Xu R; Wang D; Zhang J; Li Y
    Chem Asian J; 2006 Dec; 1(6):888-93. PubMed ID: 17441132
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enhancing colloidal metallic nanocatalysis: sharp edges and corners for solid nanoparticles and cage effect for hollow ones.
    Mahmoud MA; Narayanan R; El-Sayed MA
    Acc Chem Res; 2013 Aug; 46(8):1795-805. PubMed ID: 23387515
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Colloidal metal nanoparticles as a component of designed catalyst.
    Jia CJ; Schüth F
    Phys Chem Chem Phys; 2011 Feb; 13(7):2457-87. PubMed ID: 21246127
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Shape-controlled synthesis of Pd nanocrystals and their catalytic applications.
    Zhang H; Jin M; Xiong Y; Lim B; Xia Y
    Acc Chem Res; 2013 Aug; 46(8):1783-94. PubMed ID: 23163781
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Textural manipulation of mesoporous materials for hosting of metallic nanocatalysts.
    Sun J; Bao X
    Chemistry; 2008; 14(25):7478-88. PubMed ID: 18668502
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of microemulsion variables on copper oxide nanoparticle uptake by AOT microemulsions.
    Nassar NN; Husein MM
    J Colloid Interface Sci; 2007 Dec; 316(2):442-50. PubMed ID: 17889890
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Morphology-dependent nanocatalysis: metal particles.
    Li Y; Liu Q; Shen W
    Dalton Trans; 2011 Jun; 40(22):5811-26. PubMed ID: 21373704
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Catalytic and photocatalytic transformations on metal nanoparticles with targeted geometric and plasmonic properties.
    Linic S; Christopher P; Xin H; Marimuthu A
    Acc Chem Res; 2013 Aug; 46(8):1890-9. PubMed ID: 23750539
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Monitoring supported-nanocluster heterogeneous catalyst formation: product and kinetic evidence for a 2-step, nucleation and autocatalytic growth mechanism of Pt(0)n formation from H2PtCl6 on Al2O3 or TiO2.
    Mondloch JE; Yan X; Finke RG
    J Am Chem Soc; 2009 May; 131(18):6389-96. PubMed ID: 19379011
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The evolution of model catalytic systems; studies of structure, bonding and dynamics from single crystal metal surfaces to nanoparticles, and from low pressure (<10(-3) Torr) to high pressure (>10(-3) Torr) to liquid interfaces.
    Somorjai GA; York RL; Butcher D; Park JY
    Phys Chem Chem Phys; 2007 Jul; 9(27):3500-13. PubMed ID: 17612717
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of colloidal nanocatalysis on the metallic nanoparticle shape: the Suzuki reaction.
    Narayanan R; El-Sayed MA
    Langmuir; 2005 Mar; 21(5):2027-33. PubMed ID: 15723506
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Complementary structure sensitive and insensitive catalytic relationships.
    Van Santen RA
    Acc Chem Res; 2009 Jan; 42(1):57-66. PubMed ID: 18986176
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Nanocatalysis on tailored shape supports: Au and Pd nanoparticles supported on MgO nanocubes and ZnO nanobelts.
    Glaspell G; Hassan HM; Elzatahry A; Fuoco L; Radwan NR; El-Shall MS
    J Phys Chem B; 2006 Nov; 110(43):21387-93. PubMed ID: 17064082
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Single-molecule nanocatalysis reveals heterogeneous reaction pathways and catalytic dynamics.
    Xu W; Kong JS; Yeh YT; Chen P
    Nat Mater; 2008 Dec; 7(12):992-6. PubMed ID: 18997774
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interface-confined oxide nanostructures for catalytic oxidation reactions.
    Fu Q; Yang F; Bao X
    Acc Chem Res; 2013 Aug; 46(8):1692-701. PubMed ID: 23458033
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Flexible ureasil hybrids with tailored optical properties through doping with metal nanoparticles.
    Boev VI; Pérez-Juste J; Pastoriza-Santos I; Silva CJ; Gomes Mde J; Liz-Marzán LM
    Langmuir; 2004 Nov; 20(23):10268-72. PubMed ID: 15518523
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Size-dependent catalytic activity and dynamics of gold nanoparticles at the single-molecule level.
    Zhou X; Xu W; Liu G; Panda D; Chen P
    J Am Chem Soc; 2010 Jan; 132(1):138-46. PubMed ID: 19968305
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 23.