These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
141 related articles for article (PubMed ID: 16852577)
1. Covalent attachment of TAT peptides and thiolated alkyl molecules on GaAs surfaces. Cho Y; Ivanisevic A J Phys Chem B; 2005 Jul; 109(26):12731-7. PubMed ID: 16852577 [TBL] [Abstract][Full Text] [Related]
2. TAT peptide immobilization on gold surfaces: a comparison study with a thiolated peptide and alkylthiols using AFM, XPS, and FT-IRRAS. Cho Y; Ivanisevic A J Phys Chem B; 2005 Apr; 109(13):6225-32. PubMed ID: 16851689 [TBL] [Abstract][Full Text] [Related]
3. Peptides on GaAs surfaces: comparison between features generated by microcontact printing and dip-pen nanolithography. Cho Y; Ivanisevic A Langmuir; 2006 Oct; 22(21):8670-4. PubMed ID: 17014103 [TBL] [Abstract][Full Text] [Related]
4. Mapping the interaction forces between TAR RNA and TAT peptides on GaAs surfaces using chemical force microscopy. Cho Y; Ivanisevic A Langmuir; 2006 Feb; 22(4):1768-74. PubMed ID: 16460104 [TBL] [Abstract][Full Text] [Related]
5. Mixed adlayer of alkanethiol and peptide on GaAs(100): quantitative characterization by X-ray photoelectron spectroscopy. Wampler HP; Zemlyanov DY; Lee K; Janes DB; Ivanisevic A Langmuir; 2008 Apr; 24(7):3164-70. PubMed ID: 18275237 [TBL] [Abstract][Full Text] [Related]
6. Elastomeric nanoparticle composites covalently bound to Al2O3/GaAs surfaces. Song HM; Ye PD; Ivanisevic A Langmuir; 2007 Aug; 23(18):9472-80. PubMed ID: 17655262 [TBL] [Abstract][Full Text] [Related]
7. Adsorption of phenylphosphonic acid on GaAs (100) surfaces. Botelho do Rego AM; Ferraria AM; El Beghdadi J; Debontridder F; Brogueira P; Naaman R; Rei Vilar M Langmuir; 2005 Sep; 21(19):8765-73. PubMed ID: 16142959 [TBL] [Abstract][Full Text] [Related]
8. Regeneration of a thiolated and antibody functionalized GaAs (001) surface using wet chemical processes. Lacour V; Elie-Caille C; Leblois T; Dubowski JJ Biointerphases; 2016 Mar; 11(2):019302. PubMed ID: 26934871 [TBL] [Abstract][Full Text] [Related]
9. Hemin interaction with bare and 4,4'-thio-bis-benzene-thiolate covered n-GaAs (110) electrodes. Preda L; Negrila C; Lazarescu MF; Anastasescu M; Dobrescu G; Santos E; Lazarescu V Phys Chem Chem Phys; 2011 Oct; 13(38):17104-14. PubMed ID: 21869970 [TBL] [Abstract][Full Text] [Related]
10. Molecular orientation in octanedithiol and hexadecanethiol monolayers on GaAs and Au measured by infrared spectroscopic ellipsometry. Rosu DM; Jones JC; Hsu JW; Kavanagh KL; Tsankov D; Schade U; Esser N; Hinrichs K Langmuir; 2009 Jan; 25(2):919-23. PubMed ID: 19105790 [TBL] [Abstract][Full Text] [Related]
11. Characterization of peptide adsorption on InAs using X-ray photoelectron spectroscopy. Jewett S; Zemlyanov D; Ivanisevic A Langmuir; 2011 Apr; 27(7):3774-82. PubMed ID: 21401068 [TBL] [Abstract][Full Text] [Related]
12. Label-free detection of protein-protein interactions at the GaAs/water interface through surface infrared spectroscopy: discrimination between specific and nonspecific interactions by using secondary structure analysis. Onodera K; Hirano-Iwata A; Miyamoto K; Kimura Y; Kataoka M; Shinohara Y; Niwano M Langmuir; 2007 Nov; 23(24):12287-92. PubMed ID: 17949123 [TBL] [Abstract][Full Text] [Related]
13. Selective side-chain modification of cysteine and arginine residues blocks pathogenic activity of HIV-1-Tat functional peptides. Devadas K; Boykins RA; Hardegen NJ; Philp D; Kleinman HK; Osa EO; Wang J; Clouse KA; Wahl LM; Hewlett IK; Rappaport J; Yamada KM; Dhawan S Peptides; 2006 Apr; 27(4):611-21. PubMed ID: 16256245 [TBL] [Abstract][Full Text] [Related]
14. Measuring the activation energy of thiol desorption using lateral force microscopy. Liao YC; Sun H; Weeks BL Scanning; 2012; 34(3):200-5. PubMed ID: 22020982 [TBL] [Abstract][Full Text] [Related]
15. Grafting of functionalized [Fe(III)(salten)] complexes to Au(111) surfaces via thiolate groups: surface spectroscopic characterization and comparison of different linker designs. Jacob H; Kathirvel K; Petersen F; Strunskus T; Bannwarth A; Meyer S; Tuczek F Langmuir; 2013 Jul; 29(27):8534-43. PubMed ID: 23751117 [TBL] [Abstract][Full Text] [Related]
16. Dendrimer-functionalized self-assembled monolayers as a surface plasmon resonance sensor surface. Mark SS; Sandhyarani N; Zhu C; Campagnolo C; Batt CA Langmuir; 2004 Aug; 20(16):6808-17. PubMed ID: 15274589 [TBL] [Abstract][Full Text] [Related]
17. Structure, bonding nature, and binding energy of alkanethiolate on As-rich GaAs (001) surface: a density functional theory study. Voznyy O; Dubowski JJ J Phys Chem B; 2006 Nov; 110(47):23619-22. PubMed ID: 17125316 [TBL] [Abstract][Full Text] [Related]
18. Adsorption of β-amyloid oligomers on octadecanethiol monolayers. Ragaliauskas T; Mickevicius M; Budvytyte R; Niaura G; Carbonnier B; Valincius G J Colloid Interface Sci; 2014 Jul; 425():159-67. PubMed ID: 24776678 [TBL] [Abstract][Full Text] [Related]
19. Chemically transformable configurations of mercaptohexadecanoic acid self-assembled monolayers adsorbed on Au(111). Willey TM; Vance AL; van Buuren T; Bostedt C; Nelson AJ; Terminello LJ; Fadley CS Langmuir; 2004 Mar; 20(7):2746-52. PubMed ID: 15835147 [TBL] [Abstract][Full Text] [Related]
20. Cytochrome c self-assembly on alkanethiol monolayer electrodes as characterized by AFM, IR, QCM, and direct electrochemistry. Nakano K; Yoshitake T; Yamashita Y; Bowden EF Langmuir; 2007 May; 23(11):6270-5. PubMed ID: 17461603 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]