These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

142 related articles for article (PubMed ID: 16852635)

  • 21. Size tunable gold nanorods evenly distributed in the channels of mesoporous silica.
    Li Z; Kübel C; Pârvulescu VI; Richards R
    ACS Nano; 2008 Jun; 2(6):1205-12. PubMed ID: 19206338
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Highly sensitive plasmonic silver nanorods.
    Jakab A; Rosman C; Khalavka Y; Becker J; Trügler A; Hohenester U; Sönnichsen C
    ACS Nano; 2011 Sep; 5(9):6880-5. PubMed ID: 21851108
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Geometry dependence of the phonon modes in CdSe nanorods.
    Lange H; Artemyev M; Woggon U; Thomsen C
    Nanotechnology; 2009 Jan; 20(4):045705. PubMed ID: 19417331
    [TBL] [Abstract][Full Text] [Related]  

  • 24. pH controlled synthesis of high aspect-ratio gold nanorods.
    Wei Q; Ji J; Shen J
    J Nanosci Nanotechnol; 2008 Nov; 8(11):5708-14. PubMed ID: 19198293
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Methods for describing the electromagnetic properties of silver and gold nanoparticles.
    Zhao J; Pinchuk AO; McMahon JM; Li S; Ausman LK; Atkinson AL; Schatz GC
    Acc Chem Res; 2008 Dec; 41(12):1710-20. PubMed ID: 18712883
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Optical response of ultrafine spherical silver nanoparticles arranged in hexagonal planar arrays studied by the DDA method.
    Portalès H; Pinna N; Pileni MP
    J Phys Chem A; 2009 Apr; 113(16):4094-9. PubMed ID: 19278219
    [TBL] [Abstract][Full Text] [Related]  

  • 27. One-pot synthesis of gold nanorods by ultrasonic irradiation: the effect of pH on the shape of the gold nanorods and nanoparticles.
    Okitsu K; Sharyo K; Nishimura R
    Langmuir; 2009 Jul; 25(14):7786-90. PubMed ID: 19545140
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Optical and biological sensing capabilities of Au2S/AuAgS coated gold nanorods.
    Huang H; Liu X; Zeng Y; Yu X; Liao B; Yi P; Chu PK
    Biomaterials; 2009 Oct; 30(29):5622-30. PubMed ID: 19625079
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Azide-derivatized gold nanorods: functional materials for "click" chemistry.
    Gole A; Murphy CJ
    Langmuir; 2008 Jan; 24(1):266-72. PubMed ID: 18052398
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Nanorod-coated PNIPAM microgels: thermoresponsive optical properties.
    Karg M; Pastoriza-Santos I; Pérez-Juste J; Hellweg T; Liz-Marzán LM
    Small; 2007 Jul; 3(7):1222-9. PubMed ID: 17487899
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Synthesis and optical characterization of submicrometer gold nanotubes grown on goethite rods.
    Spuch-Calvar M; Pacifico J; Pérez-Juste J; Liz-Marzán LM
    Langmuir; 2008 Sep; 24(17):9675-81. PubMed ID: 18412379
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Calculation of the microscopic and macroscopic linear and nonlinear optical properties of liquid acetonitrile. II. Local fields and linear and nonlinear susceptibilities in quadrupolar approximation.
    Avramopoulos A; Papadopoulos MG; Reis H
    J Phys Chem B; 2007 Mar; 111(10):2546-53. PubMed ID: 17311448
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Contributions from radiation damping and surface scattering to the linewidth of the longitudinal plasmon band of gold nanorods: a single particle study.
    Novo C; Gomez D; Perez-Juste J; Zhang Z; Petrova H; Reismann M; Mulvaney P; Hartland GV
    Phys Chem Chem Phys; 2006 Aug; 8(30):3540-6. PubMed ID: 16871343
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Electrochemical formation of crooked gold nanorods and gold networked structures by the additive organic solvent.
    Huang CJ; Chiu PH; Wang YH; Yang CF; Feng SW
    J Colloid Interface Sci; 2007 Feb; 306(1):56-65. PubMed ID: 17064724
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Selective release of multiple DNA oligonucleotides from gold nanorods.
    Wijaya A; Schaffer SB; Pallares IG; Hamad-Schifferli K
    ACS Nano; 2009 Jan; 3(1):80-6. PubMed ID: 19206252
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Different Plasmon Sensing Behavior of Silver and Gold Nanorods.
    Mahmoud MA; El-Sayed MA
    J Phys Chem Lett; 2013 May; 4(9):1541-5. PubMed ID: 26282312
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Surface plasmon resonance of two-segmented Au-Cu nanorods.
    Azarian A; Iraji Zad A; Dolati A; Ghorbani M
    Nanotechnology; 2008 Oct; 19(41):415705. PubMed ID: 21832656
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Controlled synthesis of alpha-Fe2O3 nanorods and its size-dependent optical absorption, electrochemical, and magnetic properties.
    Zeng S; Tang K; Li T
    J Colloid Interface Sci; 2007 Aug; 312(2):513-21. PubMed ID: 17498731
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Influence of the close sphere interaction on the surface plasmon resonance absorption peak.
    Pecharromán C
    Phys Chem Chem Phys; 2009 Jul; 11(28):5922-9. PubMed ID: 19588014
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Controlling the orientations of gold nanorods inside highly packed 2D arrays.
    Mahmoud MA
    Phys Chem Chem Phys; 2014 Dec; 16(47):26153-62. PubMed ID: 25360895
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.