These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 16852698)

  • 1. Mass transport model for semiconductor nanowire growth.
    Johansson J; Svensson CP; Mårtensson T; Samuelson L; Seifert W
    J Phys Chem B; 2005 Jul; 109(28):13567-71. PubMed ID: 16852698
    [TBL] [Abstract][Full Text] [Related]  

  • 2. InSb heterostructure nanowires: MOVPE growth under extreme lattice mismatch.
    Caroff P; Messing ME; Mattias Borg B; Dick KA; Deppert K; Wernersson LE
    Nanotechnology; 2009 Dec; 20(49):495606. PubMed ID: 19904026
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structural properties of <111>B -oriented III-V nanowires.
    Johansson J; Karlsson LS; Svensson CP; Mårtensson T; Wacaser BA; Deppert K; Samuelson L; Seifert W
    Nat Mater; 2006 Jul; 5(7):574-80. PubMed ID: 16783358
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development and operation of research-scale III-V nanowire growth reactors.
    Schroer MD; Xu SY; Bergman AM; Petta JR
    Rev Sci Instrum; 2010 Feb; 81(2):023903. PubMed ID: 20192505
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Growth kinetics of heterostructured GaP-GaAs nanowires.
    Verheijen MA; Immink G; de Smet T; Borgström MT; Bakkers EP
    J Am Chem Soc; 2006 Feb; 128(4):1353-9. PubMed ID: 16433555
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Epitaxial integration of nanowires in microsystems by local micrometer-scale vapor-phase epitaxy.
    Mølhave K; Wacaser BA; Petersen DH; Wagner JB; Samuelson L; Bøggild P
    Small; 2008 Oct; 4(10):1741-6. PubMed ID: 18819133
    [TBL] [Abstract][Full Text] [Related]  

  • 7. III-V semiconductor nanowire growth: does arsenic diffuse through the metal nanoparticle catalyst?
    Tizei LH; Chiaramonte T; Ugarte D; Cotta MA
    Nanotechnology; 2009 Jul; 20(27):275604. PubMed ID: 19531855
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Detailed modeling of the epitaxial growth of GaAs nanowires.
    De Jong E; LaPierre RR; Wen JZ
    Nanotechnology; 2010 Jan; 21(4):045602. PubMed ID: 20009168
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Mechanism of self-assembled growth of ordered GaAs nanowire arrays by metalorganic vapor phase epitaxy on GaAs vicinal substrates.
    Mohan P; Bag R; Singh S; Kumar A; Tyagi R
    Nanotechnology; 2012 Jan; 23(2):025601. PubMed ID: 22166369
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Solid-phase diffusion mechanism for GaAs nanowire growth.
    Persson AI; Larsson MW; Stenström S; Ohlsson BJ; Samuelson L; Wallenberg LR
    Nat Mater; 2004 Oct; 3(10):677-81. PubMed ID: 15378051
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Semiconducting III-V nanowires with nanogaps for molecular junctions: DFT transport simulations.
    Kallesøe C; Fürst JA; Mølhave K; Bøggild P; Brandbyge M
    Nanotechnology; 2009 Nov; 20(46):465401. PubMed ID: 19843997
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Direct integration of III-V compound semiconductor nanostructures on silicon by selective epitaxy.
    Zhao Z; Yadavalli K; Hao Z; Wang KL
    Nanotechnology; 2009 Jan; 20(3):035304. PubMed ID: 19417293
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Direct synthesis of silicon oxide nanowires on organic polymer substrates.
    Yun J; Jeong Y; Lee GH
    Nanotechnology; 2009 Sep; 20(36):365606. PubMed ID: 19687544
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Large-scale, hot-filament-assisted synthesis of tungsten oxide and related transition metal oxide nanowires.
    Thangala J; Vaddiraju S; Bogale R; Thurman R; Powers T; Deb B; Sunkara MK
    Small; 2007 May; 3(5):890-6. PubMed ID: 17415736
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A growth interruption technique for stacking fault-free nanowire superlattices.
    Mohseni PK; LaPierre RR
    Nanotechnology; 2009 Jan; 20(2):025610. PubMed ID: 19417279
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Growth mechanism of GaN nanowires: preferred nucleation site and effect of hydrogen.
    Lim SK; Crawford S; Gradecak S
    Nanotechnology; 2010 Aug; 21(34):345604. PubMed ID: 20683137
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Aqueous-solution growth of GaP and InP nanowires: a general route to phosphide, oxide, sulfide, and tungstate nanowires.
    Xiong Y; Xie Y; Li Z; Li X; Gao S
    Chemistry; 2004 Feb; 10(3):654-60. PubMed ID: 14767929
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Room-temperature ultraviolet nanowire nanolasers.
    Huang MH; Mao S; Feick H; Yan H; Wu Y; Kind H; Weber E; Russo R; Yang P
    Science; 2001 Jun; 292(5523):1897-9. PubMed ID: 11397941
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Growth characteristics of GaAs nanowires obtained by selective area metal-organic vapour-phase epitaxy.
    Ikejiri K; Sato T; Yoshida H; Hiruma K; Motohisa J; Hara S; Fukui T
    Nanotechnology; 2008 Jul; 19(26):265604. PubMed ID: 21828685
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Mechanisms of molecular beam epitaxy growth in InAs/InP nanowire heterostructures.
    Haapamaki CM; Lapierre RR
    Nanotechnology; 2011 Aug; 22(33):335602. PubMed ID: 21788682
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.