These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

152 related articles for article (PubMed ID: 16852729)

  • 1. Protein-labeling effects in confocal laser scanning microscopy.
    Teske CA; Schroeder M; Simon R; Hubbuch J
    J Phys Chem B; 2005 Jul; 109(28):13811-7. PubMed ID: 16852729
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Changes in retention behavior of fluorescently labeled proteins during ion-exchange chromatography caused by different protein surface labeling positions.
    Teske CA; Simon R; Niebisch A; Hubbuch J
    Biotechnol Bioeng; 2007 Sep; 98(1):193-200. PubMed ID: 17318908
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Competitive adsorption of labeled and native protein in confocal laser scanning microscopy.
    Teske CA; von Lieres E; Schröder M; Ladiwala A; Cramer SM; Hubbuch JJ
    Biotechnol Bioeng; 2006 Sep; 95(1):58-66. PubMed ID: 16752371
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Visualizing two-component protein diffusion in porous adsorbents by confocal scanning laser microscopy.
    Linden T; Ljunglöf A; Kula MR; Thömmes J
    Biotechnol Bioeng; 1999 Dec; 65(6):622-30. PubMed ID: 10550768
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Confocal microscopy study of uptake kinetics of alpha-lactalbumin and beta-lactoglobulin onto the cation-exchanger SP Sepharose FF.
    El-Sayed MM; Chase HA
    J Sep Sci; 2009 Sep; 32(18):3246-56. PubMed ID: 19697318
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of mass transport models for protein adsorption to cation exchanger by visualization with confocal laser scanning microscopy.
    Zhou XP; Li W; Shi QH; Sun Y
    J Chromatogr A; 2006 Jan; 1103(1):110-7. PubMed ID: 16313916
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Confocal laser scanning microscopy as an analytical tool in chromatographic research.
    Hubbuch J; Kula MR
    Bioprocess Biosyst Eng; 2008 Apr; 31(3):241-59. PubMed ID: 18196281
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modeling and simulation of protein uptake in cation exchanger visualized by confocal laser scanning microscopy.
    Yang K; Shi QH; Sun Y
    J Chromatogr A; 2006 Dec; 1136(1):19-28. PubMed ID: 17034803
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Quantifying anisotropic solute transport in protein crystals using 3-D laser scanning confocal microscopy visualization.
    Cvetkovic A; Straathof AJ; Hanlon DN; van der Zwaag S; Krishna R; van der Wielen LA
    Biotechnol Bioeng; 2004 May; 86(4):389-98. PubMed ID: 15112291
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamics of protein uptake within the adsorbent particle during packed bed chromatography.
    Hubbuch J; Linden T; Knieps E; Thömmes J; Kula MR
    Biotechnol Bioeng; 2002 Nov; 80(4):359-68. PubMed ID: 12325144
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Apo alpha-lactalbumin and lysozyme are colocalized in their subsequently formed spherical supramolecular assembly.
    Nigen M; Croguennec T; Madec MN; Bouhallab S
    FEBS J; 2007 Dec; 274(23):6085-93. PubMed ID: 17970750
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Visualising fouling of a chromatographic matrix using confocal scanning laser microscopy.
    Siu SC; Boushaba R; Topoyassakul V; Graham A; Choudhury S; Moss G; Titchener-Hooker NJ
    Biotechnol Bioeng; 2006 Nov; 95(4):714-23. PubMed ID: 16817189
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Direct quantification of intraparticle protein diffusion in chromatographic media.
    Schröder M; von Lieres E; Hubbuch J
    J Phys Chem B; 2006 Jan; 110(3):1429-36. PubMed ID: 16471694
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of ionic strength on lysozyme uptake rates in cation exchangers. I: Uptake in SP Sepharose FF.
    Dziennik SR; Belcher EB; Barker GA; Lenhoff AM
    Biotechnol Bioeng; 2005 Jul; 91(2):139-53. PubMed ID: 15889407
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Studies of lysozyme binding to histamine as a ligand for hydrophobic charge induction chromatography.
    Shi QH; Shen FF; Sun S
    Biotechnol Prog; 2010; 26(1):134-41. PubMed ID: 19785039
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamic behavior of binary component ion-exchange displacement chromatography of proteins visualized by confocal laser scanning microscopy.
    Shi QH; Shi ZC; Sun Y
    J Chromatogr A; 2012 Sep; 1257():48-57. PubMed ID: 22901622
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Investigation of pore diffusion hindrance of monoclonal antibody in hydrophobic interaction chromatography using confocal laser scanning microscopy.
    Susanto A; Herrmann T; von Lieres E; Hubbuch J
    J Chromatogr A; 2007 May; 1149(2):178-88. PubMed ID: 17418853
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Effects of ionic strength and mobile phase pH on the binding orientation of lysozyme on different ion-exchange adsorbents.
    Dismer F; Petzold M; Hubbuch J
    J Chromatogr A; 2008 Jun; 1194(1):11-21. PubMed ID: 18234205
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nondiffusive mechanisms enhance protein uptake rates in ion exchange particles.
    Dziennik SR; Belcher EB; Barker GA; DeBergalis MJ; Fernandez SE; Lenhoff AM
    Proc Natl Acad Sci U S A; 2003 Jan; 100(2):420-5. PubMed ID: 12522150
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Charged nanoparticles as protein delivery systems: a feasibility study using lysozyme as model protein.
    Cai C; Bakowsky U; Rytting E; Schaper AK; Kissel T
    Eur J Pharm Biopharm; 2008 May; 69(1):31-42. PubMed ID: 18023160
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.