BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

273 related articles for article (PubMed ID: 16852760)

  • 1. Template-synthesized LiCoO2, LiMn2O4, and LiNi0.8 Co0.2 O2 nanotubes as the cathode materials of lithium ion batteries.
    Li X; Cheng F; Guo B; Chen J
    J Phys Chem B; 2005 Jul; 109(29):14017-24. PubMed ID: 16852760
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Synthesis and electrochemical properties of nanostructured LiCoO2 fibers as cathode materials for lithium-ion batteries.
    Gu Y; Chen D; Jiao X
    J Phys Chem B; 2005 Sep; 109(38):17901-6. PubMed ID: 16853296
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Nickel oxide nanotubes: synthesis and electrochemical performance for use in lithium ion batteries.
    Needham SA; Wang GX; Liu HK; Yang L
    J Nanosci Nanotechnol; 2006 Jan; 6(1):77-81. PubMed ID: 16573073
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Enhancement of the electrochemical properties of LiMn2O4 through Al3+ and F- co-substitution.
    Bao SJ; Liang YY; Zhou WJ; He BL; Li HL
    J Colloid Interface Sci; 2005 Nov; 291(2):433-7. PubMed ID: 15961099
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structural and electrochemical characterization of nanocrystalline LI[Li0.12Ni0.32Mn(0.56)]O2 synthesized by a polymer-pyrolysis route.
    Yu L; Yang H; Ai X; Cao Y
    J Phys Chem B; 2005 Jan; 109(3):1148-54. PubMed ID: 16851074
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Synthesis of Eu2O3 nanotube arrays through a facile sol-gel template approach.
    Wu G; Zhang L; Cheng B; Xie T; Yuan X
    J Am Chem Soc; 2004 May; 126(19):5976-7. PubMed ID: 15137757
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Fabrication, structural characterization and formation mechanism of multiferroic BiFeO3 nanotubes.
    Singh S; Krupanidhi SB
    J Nanosci Nanotechnol; 2008 Jan; 8(1):335-9. PubMed ID: 18468079
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Combination of lightweight elements and nanostructured materials for batteries.
    Chen J; Cheng F
    Acc Chem Res; 2009 Jun; 42(6):713-23. PubMed ID: 19354236
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Synthesis and electrochemical properties of chemically substituted LiMn2O4 prepared by a solution-based gel method.
    He BL; Zhou WJ; Liang YY; Bao SJ; Li HL
    J Colloid Interface Sci; 2006 Aug; 300(2):633-9. PubMed ID: 16782119
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Conducting poly(aniline) nanotubes and nanofibers: controlled synthesis and application in lithium/poly(aniline) rechargeable batteries.
    Cheng F; Tang W; Li C; Chen J; Liu H; Shen P; Dou S
    Chemistry; 2006 Apr; 12(11):3082-8. PubMed ID: 16429467
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanosize effect on high-rate Li-ion intercalation in LiCoO2 electrode.
    Okubo M; Hosono E; Kim J; Enomoto M; Kojima N; Kudo T; Zhou H; Honma I
    J Am Chem Soc; 2007 Jun; 129(23):7444-52. PubMed ID: 17511453
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Fabrication of patterned polystyrene nanotube arrays in an anodic aluminum oxide template by photolithography and the multiwetting mechanism.
    Li X; Wang Y; Song G; Peng Z; Li P; Lin Q; Zhang N; Wang Z; Duan X
    J Phys Chem B; 2009 Sep; 113(36):12227-30. PubMed ID: 19689149
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Roles of surface chemistry on safety and electrochemistry in lithium ion batteries.
    Lee KT; Jeong S; Cho J
    Acc Chem Res; 2013 May; 46(5):1161-70. PubMed ID: 22509931
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Preparation and optical properties of ThO(2) and Eu-doped ThO(2) nanotubes by the sol-gel method combined with porous anodic aluminum oxide template.
    Lin ZW; Kuang Q; Lian W; Jiang ZY; Xie ZX; Huang RB; Zheng LS
    J Phys Chem B; 2006 Nov; 110(46):23007-11. PubMed ID: 17107138
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nickel-rich layered microspheres cathodes: lithium/nickel disordering and electrochemical performance.
    Fu C; Li G; Luo D; Li Q; Fan J; Li L
    ACS Appl Mater Interfaces; 2014 Sep; 6(18):15822-31. PubMed ID: 25203668
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Atomic resolution of lithium ions in LiCoO2.
    Shao-Horn Y; Croguennec L; Delmas C; Nelson EC; O'Keefe MA
    Nat Mater; 2003 Jul; 2(7):464-7. PubMed ID: 12806387
    [TBL] [Abstract][Full Text] [Related]  

  • 17. CO₂ and O₂ evolution at high voltage cathode materials of Li-ion batteries: a differential electrochemical mass spectrometry study.
    Wang H; Rus E; Sakuraba T; Kikuchi J; Kiya Y; Abruña HD
    Anal Chem; 2014 Jul; 86(13):6197-201. PubMed ID: 24845246
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Comparison of nanorod-structured Li[Ni0.54 Co0.16 Mn0.30 ]O2 with conventional cathode materials for Li-ion batteries.
    Noh HJ; Ju JW; Sun YK
    ChemSusChem; 2014 Jan; 7(1):245-52. PubMed ID: 24127348
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Nanostructured hybrid silicon/carbon nanotube heterostructures: reversible high-capacity lithium-ion anodes.
    Wang W; Kumta PN
    ACS Nano; 2010 Apr; 4(4):2233-41. PubMed ID: 20364846
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Facile Controlled Synthesis of Spinel LiMn
    Hai Y; Zhang Z; Liu H; Liao L; Fan P; Wu Y; Lv G; Mei L
    Front Chem; 2019; 7():437. PubMed ID: 31259169
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.