BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

144 related articles for article (PubMed ID: 16852839)

  • 1. Correlations between acidity, surface structure, and catalytic activity of niobium oxide supported on zirconia.
    Onfroy T; Clet G; Houalla M
    J Phys Chem B; 2005 Aug; 109(30):14588-94. PubMed ID: 16852839
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Acidity, surface structure, and catalytic performance of WO(x) supported on monoclinic zirconia.
    Onfroy T; Clet G; Houalla M
    J Phys Chem B; 2005 Mar; 109(8):3345-54. PubMed ID: 16851364
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A comparative study of the surface structure, acidity, and catalytic performance of tungstated zirconia prepared from crystalline zirconia or amorphous zirconium oxyhydroxide.
    Lebarbier V; Clet G; Houalla M
    J Phys Chem B; 2006 Jul; 110(28):13905-11. PubMed ID: 16836340
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Relations between structure, acidity, and activity of WOx/TiO2: influence of the initial state of the support, titanium oxyhydroxide, or titanium oxide.
    Lebarbier V; Clet G; Houalla M
    J Phys Chem B; 2006 Nov; 110(45):22608-17. PubMed ID: 17092008
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Relating n-pentane isomerization activity to the tungsten surface density of WO(x)/ZrO2.
    Soultanidis N; Zhou W; Psarras AC; Gonzalez AJ; Iliopoulou EF; Kiely CJ; Wachs IE; Wong MS
    J Am Chem Soc; 2010 Sep; 132(38):13462-71. PubMed ID: 20815386
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Quantitative determination of the speciation of surface vanadium oxides and their catalytic activity.
    Tian H; Ross EI; Wachs IE
    J Phys Chem B; 2006 May; 110(19):9593-600. PubMed ID: 16686507
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tuning the electronic and molecular structures of catalytic active sites with titania nanoligands.
    Ross-Medgaarden EI; Wachs IE; Knowles WV; Burrows A; Kiely CJ; Wong MS
    J Am Chem Soc; 2009 Jan; 131(2):680-7. PubMed ID: 19102648
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characterization of CuO supported on tetragonal ZrO2 catalysts for N2O decomposition to N2.
    Liu Z; Amiridis MD; Chen Y
    J Phys Chem B; 2005 Jan; 109(3):1251-5. PubMed ID: 16851088
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A combined theoretical-experimental study on the acidity of WO(x)-ZrO(2) systems.
    Galano A; Rodriguez-Gattorno G; Torres-García E
    Phys Chem Chem Phys; 2008 Jul; 10(28):4181-8. PubMed ID: 18612523
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization and catalytic functionalities of copper oxide catalysts supported on zirconia.
    Chary KV; Sagar GV; Srikanth CS; Rao VV
    J Phys Chem B; 2007 Jan; 111(3):543-50. PubMed ID: 17228912
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The role of acidic sites and the catalytic reaction pathways on the Rh/ZrO2 catalysts for ethanol steam reforming.
    Zhong Z; Ang H; Choong C; Chen L; Huang L; Lin J
    Phys Chem Chem Phys; 2009 Feb; 11(5):872-80. PubMed ID: 19290335
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Infrared spectroscopic investigation of CO adsorption on SBA-15- and KIT-6-supported nickel phosphide hydrotreating catalysts.
    Korányi TI; Pfeifer E; Mihály J; Föttinger K
    J Phys Chem A; 2008 Jun; 112(23):5126-30. PubMed ID: 18476675
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Elucidation of the molecular structure of hydrated vanadium oxide species by X-ray absorption spectroscopy: correlation between the V...V coordination number and distance and the point of zero charge of the support oxide.
    Keller DE; Koningsberger DC; Weckhuysen BM
    Phys Chem Chem Phys; 2006 Nov; 8(41):4814-24. PubMed ID: 17043726
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A comparative study on the dispersion behaviors and surface acid properties of molybdena on CeO2 and ZrO2 (Tet).
    Wan H; Li D; Zhu H; Zhang Y; Dong L; Hu Y; Liu B; Sun K; Dong L; Chen Y
    J Colloid Interface Sci; 2008 Oct; 326(1):28-34. PubMed ID: 18691721
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Sulfated and phosphated mesoporous Nb oxide in the benzylation of anisole and toluene by benzyl alcohol.
    Rao Y; Trudeau M; Antonelli D
    J Am Chem Soc; 2006 Nov; 128(43):13996-7. PubMed ID: 17061860
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In situ Raman studies during sulfidation, and operando Raman-GC during ammoxidation reaction using nickel-containing catalysts: a valuable tool to identify the transformations of catalytic species.
    Guerrero-Pérez MO; Rojas E; Gutiérrez-Alejandre A; Ramírez J; Sánchez-Minero F; Fernández-Vargas C; Bañares MA
    Phys Chem Chem Phys; 2011 May; 13(20):9260-7. PubMed ID: 21472171
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Infrared spectroscopic study on the surface properties of gamma-gallium oxide as compared to those of gamma-alumina.
    Vimont A; Lavalley JC; Sahibed-Dine A; Otero Arean C; Rodríguez Delgado M; Daturi M
    J Phys Chem B; 2005 May; 109(19):9656-64. PubMed ID: 16852163
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Photo-degradation of acid green dye over Co-ZSM-5 catalysts prepared by incipient wetness impregnation technique.
    El-Bahy ZM; Mohamed MM; Zidan FI; Thabet MS
    J Hazard Mater; 2008 May; 153(1-2):364-71. PubMed ID: 17904732
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of sulfate on the surface and catalytic properties of iron-chromium mixed oxide pillared clay.
    Mishra T; Parida KM
    J Colloid Interface Sci; 2006 Sep; 301(2):554-9. PubMed ID: 16765971
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Solvent-free preparation of nanosized sulfated zirconia with Brønsted acidic sites from a simple calcination.
    Sun Y; Ma S; Du Y; Yuan L; Wang S; Yang J; Deng F; Xiao FS
    J Phys Chem B; 2005 Feb; 109(7):2567-72. PubMed ID: 16851258
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.