These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 16852897)

  • 1. Hydrogen storage capacity of catalytically grown carbon nanofibers.
    Rzepka M; Bauer E; Reichenauer G; Schliermann T; Bernhardt B; Bohmhammel K; Henneberg E; Knoll U; Maneck HE; Braue W
    J Phys Chem B; 2005 Aug; 109(31):14979-89. PubMed ID: 16852897
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Hydrogen storage capacity characterization of carbon nanotubes by a microgravimetrical approach.
    Lan A; Mukasyan A
    J Phys Chem B; 2005 Aug; 109(33):16011-6. PubMed ID: 16853032
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Hydrogen adsorption in carbon nanostructures: comparison of nanotubes, fibers, and coals.
    Schimmel HG; Kearley GJ; Nijkamp MG; Visser CT; de Jong KP; Mulder FM
    Chemistry; 2003 Oct; 9(19):4764-70. PubMed ID: 14566884
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of expanded graphite lattice in exfoliated graphite nanofibers on hydrogen storage.
    Lueking AD; Pan L; Narayanan DL; Clifford CE
    J Phys Chem B; 2005 Jul; 109(26):12710-7. PubMed ID: 16852574
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Tailoring of nanoscale porosity in carbide-derived carbons for hydrogen storage.
    Gogotsi Y; Dash RK; Yushin G; Yildirim T; Laudisio G; Fischer JE
    J Am Chem Soc; 2005 Nov; 127(46):16006-7. PubMed ID: 16287270
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High hydrogen storage capacity of porous carbons prepared by using activated carbon.
    Wang H; Gao Q; Hu J
    J Am Chem Soc; 2009 May; 131(20):7016-22. PubMed ID: 19405471
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hydrogen storage enhanced in Li-doped carbon replica of zeolites: a possible route to achieve fuel cell demand.
    Roussel T; Bichara C; Gubbins KE; Pellenq RJ
    J Chem Phys; 2009 May; 130(17):174717. PubMed ID: 19425808
    [TBL] [Abstract][Full Text] [Related]  

  • 8. New isoreticular metal-organic framework materials for high hydrogen storage capacity.
    Sagara T; Ortony J; Ganz E
    J Chem Phys; 2005 Dec; 123(21):214707. PubMed ID: 16356061
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Preparation and hydrogen storage properties of zeolite-templated carbon materials nanocast via chemical vapor deposition: effect of the zeolite template and nitrogen doping.
    Yang Z; Xia Y; Sun X; Mokaya R
    J Phys Chem B; 2006 Sep; 110(37):18424-31. PubMed ID: 16970467
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Hydrogen storage in metal-organic frameworks.
    Murray LJ; Dincă M; Long JR
    Chem Soc Rev; 2009 May; 38(5):1294-314. PubMed ID: 19384439
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hydrogen storage in mesoporous titanium oxide-alkali fulleride composites.
    Hu X; Trudeau M; Antonelli DM
    Inorg Chem; 2008 Apr; 47(7):2477-84. PubMed ID: 18293916
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hydrogen storage in engineered carbon nanospaces.
    Burress J; Kraus M; Beckner M; Cepel R; Suppes G; Wexler C; Pfeifer P
    Nanotechnology; 2009 May; 20(20):204026. PubMed ID: 19420674
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hydrogen storage in nanoporous carbon materials: myth and facts.
    Kowalczyk P; Hołyst R; Terrones M; Terrones H
    Phys Chem Chem Phys; 2007 Apr; 9(15):1786-92. PubMed ID: 17415489
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Storage of hydrogen, methane, and carbon dioxide in highly porous covalent organic frameworks for clean energy applications.
    Furukawa H; Yaghi OM
    J Am Chem Soc; 2009 Jul; 131(25):8875-83. PubMed ID: 19496589
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Hydrogen sorption on palladium-doped sepiolite-derived carbon nanofibers.
    Back CK; Sandí G; Prakash J; Hranisavljevic J
    J Phys Chem B; 2006 Aug; 110(33):16225-31. PubMed ID: 16913747
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High surface area microporous carbon materials for cryogenic hydrogen storage synthesized using new template-based and activation-based approaches.
    Meisner GP; Hu Q
    Nanotechnology; 2009 May; 20(20):204023. PubMed ID: 19420671
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hydrogen storage in low silica type X zeolites.
    Li Y; Yang RT
    J Phys Chem B; 2006 Aug; 110(34):17175-81. PubMed ID: 16928014
    [TBL] [Abstract][Full Text] [Related]  

  • 18. High capacity hydrogen storage materials: attributes for automotive applications and techniques for materials discovery.
    Yang J; Sudik A; Wolverton C; Siegel DJ
    Chem Soc Rev; 2010 Feb; 39(2):656-75. PubMed ID: 20111786
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Tetra-n-butylammonium borohydride semiclathrate: a hybrid material for hydrogen storage.
    Shin K; Kim Y; Strobel TA; Prasad PS; Sugahara T; Lee H; Sloan ED; Sum AK; Koh CA
    J Phys Chem A; 2009 Jun; 113(23):6415-8. PubMed ID: 19445522
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Influence of quantum effects on the physisorption of molecular hydrogen in model carbon foams.
    Martínez-Mesa A; Yurchenko SN; Patchkovskii S; Heine T; Seifert G
    J Chem Phys; 2011 Dec; 135(21):214701. PubMed ID: 22149805
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.