These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
211 related articles for article (PubMed ID: 16852906)
1. Thermal conductivities of molecular liquids by reverse nonequilibrium molecular dynamics. Zhang M; Lussetti E; de Souza LE; Müller-Plathe F J Phys Chem B; 2005 Aug; 109(31):15060-7. PubMed ID: 16852906 [TBL] [Abstract][Full Text] [Related]
2. Nonequilibrium molecular dynamics calculation of the thermal conductivity of amorphous polyamide-6,6. Lussetti E; Terao T; Müller-Plathe F J Phys Chem B; 2007 Oct; 111(39):11516-23. PubMed ID: 17824639 [TBL] [Abstract][Full Text] [Related]
3. Thermal conduction in molecular materials using coarse grain dynamics: role of mass diffusion and quantum corrections for molecular dynamics simulations. Zhou Y; Strachan A J Chem Phys; 2009 Dec; 131(23):234113. PubMed ID: 20025320 [TBL] [Abstract][Full Text] [Related]
4. Anisotropy of the thermal conductivity in a crystalline polymer: reverse nonequilibrium molecular dynamics simulation of the delta phase of syndiotactic polystyrene. Rossinsky E; Müller-Plathe F J Chem Phys; 2009 Apr; 130(13):134905. PubMed ID: 19355778 [TBL] [Abstract][Full Text] [Related]
5. Anisotropy of the thermal conductivity of stretched amorphous polystyrene in supercritical carbon dioxide studied by reverse nonequilibrium molecular dynamics simulations. Algaer EA; Alaghemandi M; Böhm MC; Müller-Plathe F J Phys Chem B; 2009 Nov; 113(44):14596-603. PubMed ID: 19863137 [TBL] [Abstract][Full Text] [Related]
6. A nonequilibrium molecular dynamics method for thermal conductivities based on thermal noise. Terao T; Müller-Plathe F J Chem Phys; 2005 Feb; 122(8):81103. PubMed ID: 15836013 [TBL] [Abstract][Full Text] [Related]
7. Phonon thermal conductivity in nanolaminated composite metals via molecular dynamics. Zhou Y; Anglin B; Strachan A J Chem Phys; 2007 Nov; 127(18):184702. PubMed ID: 18020653 [TBL] [Abstract][Full Text] [Related]
8. Thermal conductivity of amorphous polystyrene in supercritical carbon dioxide studied by reverse nonequilibrium molecular dynamics simulations. Algaer EA; Alaghemandi M; Böhm MC; Müller-Plathe F J Phys Chem A; 2009 Oct; 113(43):11487-94. PubMed ID: 19569703 [TBL] [Abstract][Full Text] [Related]
9. Thermal conductivity of molten alkali halides: Temperature and density dependence. Ohtori N; Oono T; Takase K J Chem Phys; 2009 Jan; 130(4):044505. PubMed ID: 19191396 [TBL] [Abstract][Full Text] [Related]
10. Nonequilibrium molecular dynamics calculation of the thermal conductivity based on an improved relaxation scheme. Cao BY J Chem Phys; 2008 Aug; 129(7):074106. PubMed ID: 19044759 [TBL] [Abstract][Full Text] [Related]
11. Calculation of protein heat capacity from replica-exchange molecular dynamics simulations with different implicit solvent models. Yeh IC; Lee MS; Olson MA J Phys Chem B; 2008 Nov; 112(47):15064-73. PubMed ID: 18959439 [TBL] [Abstract][Full Text] [Related]
12. Molecular dynamics simulations of the thermal conductivity of methane hydrate. Jiang H; Myshakin EM; Jordan KD; Warzinski RP J Phys Chem B; 2008 Aug; 112(33):10207-16. PubMed ID: 18652505 [TBL] [Abstract][Full Text] [Related]
13. Thermal conductivity of methane hydrate from experiment and molecular simulation. Rosenbaum EJ; English NJ; Johnson JK; Shaw DW; Warzinski RP J Phys Chem B; 2007 Nov; 111(46):13194-205. PubMed ID: 17967008 [TBL] [Abstract][Full Text] [Related]
14. Separation of time scale and coupling in the motion governed by the coarse-grained and fine degrees of freedom in a polypeptide backbone. Murarka RK; Liwo A; Scheraga HA J Chem Phys; 2007 Oct; 127(15):155103. PubMed ID: 17949219 [TBL] [Abstract][Full Text] [Related]
15. The roles of electronic exchange and correlation in charge-transfer- to-solvent dynamics: Many-electron nonadiabatic mixed quantum/classical simulations of photoexcited sodium anions in the condensed phase. Glover WJ; Larsen RE; Schwartz BJ J Chem Phys; 2008 Oct; 129(16):164505. PubMed ID: 19045282 [TBL] [Abstract][Full Text] [Related]
16. Correlation between thermal conductivity and bond length alternation in carbon nanotubes: a combined reverse nonequilibrium molecular dynamics--crystal orbital analysis. Alaghemandi M; Schulte J; Leroy F; Müller-Plathe F; Böhm MC J Comput Chem; 2011 Jan; 32(1):121-33. PubMed ID: 20645298 [TBL] [Abstract][Full Text] [Related]
17. System size and control parameter effects in reverse perturbation nonequilibrium molecular dynamics. Mountain RD J Chem Phys; 2006 Mar; 124(10):104109. PubMed ID: 16542070 [TBL] [Abstract][Full Text] [Related]
18. Constructing a force interaction model for thermal conductivity computation using molecular dynamics simulation: ethylene glycol as an example. Lin YS; Hsiao PY; Chieng CC J Chem Phys; 2011 Apr; 134(15):154509. PubMed ID: 21513397 [TBL] [Abstract][Full Text] [Related]
19. A uniform source-and-sink scheme for calculating thermal conductivity by nonequilibrium molecular dynamics. Cao BY; Li YW J Chem Phys; 2010 Jul; 133(2):024106. PubMed ID: 20632747 [TBL] [Abstract][Full Text] [Related]
20. Reverse nonequilibrium molecular-dynamics calculation of the Soret coefficient in liquid benzene/cyclohexane mixtures. Zhang M; Müller-Plathe F J Chem Phys; 2005 Sep; 123(12):124502. PubMed ID: 16392493 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]