BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

198 related articles for article (PubMed ID: 16852957)

  • 1. Determination of the density and energetic distribution of electron traps in dye-sensitized nanocrystalline solar cells.
    Bailes M; Cameron PJ; Lobato K; Peter LM
    J Phys Chem B; 2005 Aug; 109(32):15429-35. PubMed ID: 16852957
    [TBL] [Abstract][Full Text] [Related]  

  • 2. How does back-reaction at the conducting glass substrate influence the dynamic photovoltage response of nanocrystalline dye-sensitized solar cells?
    Cameron PJ; Peter LM
    J Phys Chem B; 2005 Apr; 109(15):7392-8. PubMed ID: 16851846
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Illumination intensity dependence of the photovoltage in nanostructured TiO2 dye-sensitized solar cells.
    Salvador P; Hidalgo MG; Zaban A; Bisquert J
    J Phys Chem B; 2005 Aug; 109(33):15915-26. PubMed ID: 16853020
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The influence of charge transport and recombination on the performance of dye-sensitized solar cells.
    Wang M; Chen P; Humphry-Baker R; Zakeeruddin SM; Grätzel M
    Chemphyschem; 2009 Jan; 10(1):290-9. PubMed ID: 19115326
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The influence of dye structure on charge recombination in dye-sensitized solar cells.
    Jennings JR; Liu Y; Wang Q; Zakeeruddin SM; Grätzel M
    Phys Chem Chem Phys; 2011 Apr; 13(14):6637-48. PubMed ID: 21380426
    [TBL] [Abstract][Full Text] [Related]  

  • 6. How important is the back reaction of electrons via the substrate in dye-sensitized nanocrystalline solar cells?
    Cameron PJ; Peter LM; Hore S
    J Phys Chem B; 2005 Jan; 109(2):930-6. PubMed ID: 16866461
    [TBL] [Abstract][Full Text] [Related]  

  • 7. "Sticky electrons" transport and interfacial transfer of electrons in the dye-sensitized solar cell.
    Peter L
    Acc Chem Res; 2009 Nov; 42(11):1839-47. PubMed ID: 19637905
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Comparison of low crystallinity TiO2 film with nanocrystalline anatase film for dye-sensitized solar cells.
    Tang X; Qian J; Wang Z; Wang H; Feng Q; Liu G
    J Colloid Interface Sci; 2009 Feb; 330(2):386-91. PubMed ID: 19036388
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Coupled analysis of steady-state and dynamic characteristics of dye-sensitized solar cells for determination of conduction band movement and recombination parameters.
    Shi Y; Dong X
    Phys Chem Chem Phys; 2013 Jan; 15(1):299-306. PubMed ID: 23165346
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Determination of rate constants for charge transfer and the distribution of semiconductor and electrolyte electronic energy levels in dye-sensitized solar cells by open-circuit photovoltage decay method.
    Bisquert J; Zaban A; Greenshtein M; Mora-Seró I
    J Am Chem Soc; 2004 Oct; 126(41):13550-9. PubMed ID: 15479112
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Method to protect charge recombination in the back-contact dye-sensitized solar cell.
    Yoo B; Kim KJ; Lee DK; Kim K; Ko MJ; Kim YH; Kim WM; Park NG
    Opt Express; 2010 Sep; 18 Suppl 3():A395-402. PubMed ID: 21165069
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Activation energy of electron transport in dye-sensitized TiO2 solar cells.
    Boschloo G; Hagfeldt A
    J Phys Chem B; 2005 Jun; 109(24):12093-8. PubMed ID: 16852492
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dye-sensitized solar cells based on oriented TiO2 nanotube arrays: transport, trapping, and transfer of electrons.
    Jennings JR; Ghicov A; Peter LM; Schmuki P; Walker AB
    J Am Chem Soc; 2008 Oct; 130(40):13364-72. PubMed ID: 18774820
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Electron transport analysis for improvement of solid-state dye-sensitized solar cells using poly(3,4-ethylenedioxythiophene) as hole conductors.
    Fukuri N; Masaki N; Kitamura T; Wada Y; Yanagida S
    J Phys Chem B; 2006 Dec; 110(50):25251-8. PubMed ID: 17165969
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Direct measurement of the internal electron quasi-Fermi level in dye sensitized solar cells using a titanium secondary electrode.
    Lobato K; Peter LM; Würfel U
    J Phys Chem B; 2006 Aug; 110(33):16201-4. PubMed ID: 16913742
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of surface area on charge transport and recombination in dye-sensitized TiO2 solar cells.
    Zhu K; Kopidakis N; Neale NR; van de Lagemaat J; Frank AJ
    J Phys Chem B; 2006 Dec; 110(50):25174-80. PubMed ID: 17165961
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Direct measurement of the temperature coefficient of the electron quasi-fermi level in dye-sensitized nanocrystalline solar cells using a titanium sensor electrode.
    Lobato K; Peter LM
    J Phys Chem B; 2006 Nov; 110(43):21920-3. PubMed ID: 17064159
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Interpretation of apparent activation energies for electron transport in dye-sensitized nanocrystalline solar cells.
    Peter LM; Walker AB; Boschloo G; Hagfeldt A
    J Phys Chem B; 2006 Jul; 110(28):13694-9. PubMed ID: 16836312
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Analysis of photovoltage decay transients in dye-sensitized solar cells.
    Walker AB; Peter LM; Lobato K; Cameron PJ
    J Phys Chem B; 2006 Dec; 110(50):25504-7. PubMed ID: 17165999
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simulation and measurement of complete dye sensitised solar cells: including the influence of trapping, electrolyte, oxidised dyes and light intensity on steady state and transient device behaviour.
    Barnes PR; Anderson AY; Durrant JR; O'Regan BC
    Phys Chem Chem Phys; 2011 Apr; 13(13):5798-816. PubMed ID: 21327204
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.