BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

235 related articles for article (PubMed ID: 16852993)

  • 1. Electrooxidation of carbon monoxide on gold nanoparticle ensemble electrodes: effects of particle coverage.
    Kumar S; Zou S
    J Phys Chem B; 2005 Aug; 109(33):15707-13. PubMed ID: 16852993
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electrooxidation of carbon monoxide and methanol on platinum-overlayer-coated gold nanoparticles: effects of film thickness.
    Kumar S; Zou S
    Langmuir; 2007 Jun; 23(13):7365-71. PubMed ID: 17521203
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Self-assembled multilayers of gold nanoparticles: nitrate-induced rectification of quantized capacitance charging and effects of alkaline (earth) ions in aqueous solutions.
    Deng F; Chen S
    Phys Chem Chem Phys; 2005 Sep; 7(18):3375-81. PubMed ID: 16240053
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Laser-induced temperature jump electrochemistry on gold nanoparticle-coated electrodes.
    Lowe LB; Brewer SH; Krämer S; Fuierer RR; Qian G; Agbasi-Porter CO; Moses S; Franzen S; Feldheim DL
    J Am Chem Soc; 2003 Nov; 125(47):14258-9. PubMed ID: 14624557
    [TBL] [Abstract][Full Text] [Related]  

  • 5. CO oxidation on Pt-modified Rh(111) electrodes.
    Housmans TH; Feliu JM; Gómez R; Koper MT
    Chemphyschem; 2005 Aug; 6(8):1522-9. PubMed ID: 16035023
    [TBL] [Abstract][Full Text] [Related]  

  • 6. On the enhanced electrocatalytic activity of Pd overlayers on carbon-supported gold particles in hydrogen electrooxidation.
    Ruvinsky PS; Pronkin SN; Zaikovskii VI; Bernhardt P; Savinova ER
    Phys Chem Chem Phys; 2008 Nov; 10(44):6665-76. PubMed ID: 18989479
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Stripping voltammetry of carbon monoxide oxidation on stepped platinum single-crystal electrodes in alkaline solution.
    García G; Koper MT
    Phys Chem Chem Phys; 2008 Jul; 10(25):3802-11. PubMed ID: 18563241
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transport effects in the oxygen reduction reaction on nanostructured, planar glassy carbon supported Pt/GC model electrodes.
    Schneider A; Colmenares L; Seidel YE; Jusys Z; Wickman B; Kasemo B; Behm RJ
    Phys Chem Chem Phys; 2008 Apr; 10(14):1931-43. PubMed ID: 18368186
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Carbon nanofiber vs. carbon microparticles as modifiers of glassy carbon and gold electrodes applied in electrochemical sensing of NADH.
    Pérez B; Del Valle M; Alegret S; Merkoçi A
    Talanta; 2007 Dec; 74(3):398-404. PubMed ID: 18371655
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Cobalt hydroxide nanoparticles modified glassy carbon electrode as a biosensor for electrooxidation and determination of some amino acids.
    Hasanzadeh M; Karim-Nezhad G; Shadjou N; Hajjizadeh M; Khalilzadeh B; Saghatforoush L; Abnosi MH; Babaei A; Ershad S
    Anal Biochem; 2009 Jun; 389(2):130-7. PubMed ID: 19306837
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrochemistry on a localized surface plasmon resonance sensor.
    Sannomiya T; Dermutz H; Hafner C; Vörös J; Dahlin AB
    Langmuir; 2010 May; 26(10):7619-26. PubMed ID: 20020724
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Kinetic studies of adsorbed CO electrochemical oxidation on Pt(335) at full and sub-saturation coverages.
    Inkaew P; Korzeniewski C
    Phys Chem Chem Phys; 2008 Jul; 10(25):3655-61. PubMed ID: 18563226
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Redox properties of self-assembled gold nanoclusters.
    Su B; Girault HH
    J Phys Chem B; 2005 Dec; 109(50):23925-9. PubMed ID: 16375379
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Anodic stripping voltammetry of arsenic(III) using gold nanoparticle-modified electrodes.
    Dai X; Nekrassova O; Hyde ME; Compton RG
    Anal Chem; 2004 Oct; 76(19):5924-9. PubMed ID: 15456316
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effects of the specific adsorption of anion on the reactivity of the Ru(0001) surface towards CO adsorption and oxidation: in situ FTIRS studies.
    Jin JM; Lin WF; Christensen PA
    Phys Chem Chem Phys; 2008 Jul; 10(25):3774-83. PubMed ID: 18563238
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrooxidation of CO on uniform arrays of Au nanoparticles: effects of particle size and interparticle spacing.
    Kumar S; Zou S
    Langmuir; 2009 Jan; 25(1):574-81. PubMed ID: 19063641
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of size and protein environment on electrochemical properties of gold nanoparticles on carbon electrodes.
    Abdullin TI; Bondar OV; Nikitina II; Bulatov ER; Morozov MV; Hilmutdinov AKh; Salakhov MKh; Culha M
    Bioelectrochemistry; 2009 Nov; 77(1):37-42. PubMed ID: 19574110
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Probe beam deflection studies of nanostructured catalyst materials for fuel cells.
    García G; Bruno MM; Planes GA; Rodriguez JL; Barbero CA; Pastor E
    Phys Chem Chem Phys; 2008 Nov; 10(44):6677-85. PubMed ID: 18989480
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Labeled gold nanoparticles immobilized at smooth metallic substrates: systematic investigation of surface plasmon resonance and surface-enhanced Raman scattering.
    Driskell JD; Lipert RJ; Porter MD
    J Phys Chem B; 2006 Sep; 110(35):17444-51. PubMed ID: 16942083
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Direct electrodeposition of gold nanoparticles on indium tin oxide surface and its application.
    Ma Y; Di J; Yan X; Zhao M; Lu Z; Tu Y
    Biosens Bioelectron; 2009 Jan; 24(5):1480-3. PubMed ID: 19038539
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.