BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

370 related articles for article (PubMed ID: 16853014)

  • 21. Antifreeze glycoproteins from the antarctic fish Dissostichus mawsoni studied by differential scanning calorimetry (DSC) in combination with nanolitre osmometry.
    Ramløv H; DeVries AL; Wilson PW
    Cryo Letters; 2005; 26(2):73-84. PubMed ID: 15897959
    [TBL] [Abstract][Full Text] [Related]  

  • 22. In situ deprotection and assembly of s-tritylalkanethiols on gold yields monolayers comparable to those prepared directly from alkanethiols.
    Inman CE; Reed SM; Hutchison JE
    Langmuir; 2004 Oct; 20(21):9144-50. PubMed ID: 15461499
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Formation of ice-like water structure on the surface of an antifreeze protein.
    Smolin N; Daggett V
    J Phys Chem B; 2008 May; 112(19):6193-202. PubMed ID: 18336017
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Peptide-derived self-assembled monolayers: adsorption of N-stearoyl L-cysteine methyl ester on gold.
    Dawson SL; Tirrell DA
    J Mol Recognit; 1997; 10(1):18-25. PubMed ID: 9179776
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Structure and desorption energetics of ultrathin D2O ice overlayers on serine- and serinephosphate-terminated self-assembled monolayers.
    Ostblom M; Ekeroth J; Konradsson P; Liedberg B
    J Phys Chem B; 2006 Feb; 110(4):1695-700. PubMed ID: 16471735
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Solution conformation of C-linked antifreeze glycoprotein analogues and modulation of ice recrystallization.
    Tam RY; Rowley CN; Petrov I; Zhang T; Afagh NA; Woo TK; Ben RN
    J Am Chem Soc; 2009 Nov; 131(43):15745-53. PubMed ID: 19824639
    [TBL] [Abstract][Full Text] [Related]  

  • 27. A new route to the formation of biomimetic phosphate assemblies on gold: synthesis and characterization.
    Borgh A; Ekeroth J; Petoral RM; Uvdal K; Konradsson P; Liedberg B
    J Colloid Interface Sci; 2006 Mar; 295(1):41-9. PubMed ID: 16139287
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Control over the structure of ice and water by block copolymer additives.
    Mastai Y; Rudloff J; Cölfen H; Antonietti M
    Chemphyschem; 2002 Jan; 3(1):119-23. PubMed ID: 12465484
    [No Abstract]   [Full Text] [Related]  

  • 29. Ice recrystallization kinetics in the presence of synthetic antifreeze glycoprotein analogues using the framework of LSW theory.
    Budke C; Heggemann C; Koch M; Sewald N; Koop T
    J Phys Chem B; 2009 Mar; 113(9):2865-73. PubMed ID: 19708116
    [TBL] [Abstract][Full Text] [Related]  

  • 30. A two-dimensional adsorption kinetic model for thermal hysteresis activity in antifreeze proteins.
    Li QZ; Yeh Y; Liu JJ; Feeney RE; Krishnan VV
    J Chem Phys; 2006 May; 124(20):204702. PubMed ID: 16774359
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Influence of alkyl chain length on the structure of dialkyldithiophosphinic acid self-assembled monolayers on gold.
    San Juan RR; Miller MS; Ferrato MA; Carmichael TB
    Langmuir; 2012 Sep; 28(37):13253-60. PubMed ID: 22894689
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Investigation of the mechanism of electroless deposition of copper on functionalized alkanethiolate self-assembled monolayers adsorbed on gold.
    Lu P; Walker AV
    Langmuir; 2007 Dec; 23(25):12577-82. PubMed ID: 17973508
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Antifreeze glycopeptide analogues: microwave-enhanced synthesis and functional studies.
    Heggemann C; Budke C; Schomburg B; Majer Z; Wissbrock M; Koop T; Sewald N
    Amino Acids; 2010 Jan; 38(1):213-22. PubMed ID: 19165574
    [TBL] [Abstract][Full Text] [Related]  

  • 34. 4-Mercaptophenylboronic acid SAMs on gold: comparison with SAMs derived from thiophenol, 4-mercaptophenol, and 4-mercaptobenzoic acid.
    Barriet D; Yam CM; Shmakova OE; Jamison AC; Lee TR
    Langmuir; 2007 Aug; 23(17):8866-75. PubMed ID: 17636994
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Characterization of the restricted rotation of the dimethyl groups in chemically N-terminal 13C-labeled antifreeze glycoproteins: a temperature-dependent study in water to ice through the supercooled state.
    Krishnan VV; Lau EY; Tsvetkova NM; Feeney RE; Fink WH; Yeh Y
    J Chem Phys; 2005 Jul; 123(4):044702. PubMed ID: 16095379
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Inhibition of bacterial ice nucleators by fish antifreeze glycoproteins.
    Parody-Morreale A; Murphy KP; Di Cera E; Fall R; DeVries AL; Gill SJ
    Nature; 1988 Jun; 333(6175):782-3. PubMed ID: 3386720
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Salt-induced enhancement of antifreeze protein activity: a salting-out effect.
    Kristiansen E; Pedersen SA; Zachariassen KE
    Cryobiology; 2008 Oct; 57(2):122-9. PubMed ID: 18703038
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The importance of hydration for inhibiting ice recrystallization with C-linked antifreeze glycoproteins.
    Czechura P; Tam RY; Dimitrijevic E; Murphy AV; Ben RN
    J Am Chem Soc; 2008 Mar; 130(10):2928-9. PubMed ID: 18275198
    [No Abstract]   [Full Text] [Related]  

  • 39. Some thoughts on the existence of ion and water channels in highly dense and well-ordered CH3-terminated alkanethiol self-assembled monolayers on gold.
    Dai J; Li Z; Jin J; Shi Y; Cheng J; Kong J; Bi S
    Biosens Bioelectron; 2009 Jan; 24(5):1074-82. PubMed ID: 18849157
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Self-assembled monolayers containing terminal mono-, bis-, and tris-nitrilotriacetic acid groups: characterization and application.
    Valiokas R; Klenkar G; Tinazli A; Reichel A; Tampé R; Piehler J; Liedberg B
    Langmuir; 2008 May; 24(9):4959-67. PubMed ID: 18393558
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 19.