BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

291 related articles for article (PubMed ID: 16853052)

  • 1. A theoretical study on the substrate deacylation mechanism of class C beta-lactamase.
    Hata M; Tanaka Y; Fujii Y; Neya S; Hoshino T
    J Phys Chem B; 2005 Aug; 109(33):16153-60. PubMed ID: 16853052
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Noncovalent interaction energies in covalent complexes: TEM-1 beta-lactamase and beta-lactams.
    Wang X; Minasov G; Shoichet BK
    Proteins; 2002 Apr; 47(1):86-96. PubMed ID: 11870868
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanisms of antibiotic resistance: QM/MM modeling of the acylation reaction of a class A beta-lactamase with benzylpenicillin.
    Hermann JC; Hensen C; Ridder L; Mulholland AJ; Höltje HD
    J Am Chem Soc; 2005 Mar; 127(12):4454-65. PubMed ID: 15783228
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Antibiotic deactivation by a dizinc beta-lactamase: mechanistic insights from QM/MM and DFT studies.
    Xu D; Guo H; Cui Q
    J Am Chem Soc; 2007 Sep; 129(35):10814-22. PubMed ID: 17691780
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Molecular dynamics simulations of class C beta-lactamase from Citrobacter freundii: insights into the base catalyst for acylation.
    Díaz N; Suárez D; Sordo TL
    Biochemistry; 2006 Jan; 45(2):439-51. PubMed ID: 16401074
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Crystal structure of extended-spectrum beta-lactamase Toho-1: insights into the molecular mechanism for catalytic reaction and substrate specificity expansion.
    Ibuka AS; Ishii Y; Galleni M; Ishiguro M; Yamaguchi K; Frère JM; Matsuzawa H; Sakai H
    Biochemistry; 2003 Sep; 42(36):10634-43. PubMed ID: 12962487
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Crystal structure of an acylation transition-state analog of the TEM-1 beta-lactamase. Mechanistic implications for class A beta-lactamases.
    Maveyraud L; Pratt RF; Samama JP
    Biochemistry; 1998 Feb; 37(8):2622-8. PubMed ID: 9485412
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A computational study of the deacylation mechanism of human butyrylcholinesterase.
    Suárez D; Díaz N; Fontecilla-Camps J; Field MJ
    Biochemistry; 2006 Jun; 45(24):7529-43. PubMed ID: 16768449
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High level QM/MM modeling of the formation of the tetrahedral intermediate in the acylation of wild type and K73A mutant TEM-1 class A beta-lactamase.
    Hermann JC; Pradon J; Harvey JN; Mulholland AJ
    J Phys Chem A; 2009 Oct; 113(43):11984-94. PubMed ID: 19791786
    [TBL] [Abstract][Full Text] [Related]  

  • 10. pKa, MM, and QM studies of mechanisms of beta-lactamases and penicillin-binding proteins: acylation step.
    Massova I; Kollman PA
    J Comput Chem; 2002 Dec; 23(16):1559-76. PubMed ID: 12395425
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Antibiotic binding to dizinc beta-lactamase L1 from Stenotrophomonas maltophilia: SCC-DFTB/CHARMM and DFT studies.
    Xu D; Guo H; Cui Q
    J Phys Chem A; 2007 Jul; 111(26):5630-6. PubMed ID: 17388313
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hybrid QM/MM and DFT investigations of the catalytic mechanism and inhibition of the dinuclear zinc metallo-beta-lactamase CcrA from Bacteroides fragilis.
    Park H; Brothers EN; Merz KM
    J Am Chem Soc; 2005 Mar; 127(12):4232-41. PubMed ID: 15783205
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Theoretical perspectives on the reaction mechanism of serine proteases: the reaction free energy profiles of the acylation process.
    Ishida T; Kato S
    J Am Chem Soc; 2003 Oct; 125(39):12035-48. PubMed ID: 14505425
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chromophoric spin-labeled beta-lactam antibiotics for ENDOR structural characterization of reaction intermediates of class A and class C beta-lactamases.
    Mustafi D; Hofer JE; Huang W; Palzkill T; Makinen MW
    Spectrochim Acta A Mol Biomol Spectrosc; 2004 May; 60(6):1279-89. PubMed ID: 15134725
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Substrate deacylation mechanisms of serine-beta-lactamases.
    Hata M; Fujii Y; Tanaka Y; Ishikawa H; Ishii M; Neya S; Tsuda M; Hoshino T
    Biol Pharm Bull; 2006 Nov; 29(11):2151-9. PubMed ID: 17077507
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The deacylation mechanism of AmpC beta-lactamase at ultrahigh resolution.
    Chen Y; Minasov G; Roth TA; Prati F; Shoichet BK
    J Am Chem Soc; 2006 Mar; 128(9):2970-6. PubMed ID: 16506777
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structure and dynamics of CTX-M enzymes reveal insights into substrate accommodation by extended-spectrum beta-lactamases.
    Delmas J; Chen Y; Prati F; Robin F; Shoichet BK; Bonnet R
    J Mol Biol; 2008 Jan; 375(1):192-201. PubMed ID: 17999931
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Crystallographic structure of a phosphonate derivative of the Enterobacter cloacae P99 cephalosporinase: mechanistic interpretation of a beta-lactamase transition-state analog.
    Lobkovsky E; Billings EM; Moews PC; Rahil J; Pratt RF; Knox JR
    Biochemistry; 1994 Jun; 33(22):6762-72. PubMed ID: 8204611
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular mechanisms of antibiotic resistance: QM/MM modelling of deacylation in a class A beta-lactamase.
    Hermann JC; Ridder L; Höltje HD; Mulholland AJ
    Org Biomol Chem; 2006 Jan; 4(2):206-10. PubMed ID: 16391762
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The role of the putative catalytic base in the phosphoryl transfer reaction in a protein kinase: first-principles calculations.
    Valiev M; Kawai R; Adams JA; Weare JH
    J Am Chem Soc; 2003 Aug; 125(33):9926-7. PubMed ID: 12914447
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 15.