These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
222 related articles for article (PubMed ID: 16853098)
1. Modeling the interplay between geometrical and energetic effects in protein folding. Suzuki Y; Onuchic JN J Phys Chem B; 2005 Sep; 109(34):16503-10. PubMed ID: 16853098 [TBL] [Abstract][Full Text] [Related]
2. An analytical study of the interplay between geometrical and energetic effects in protein folding. Suzuki Y; Noel JK; Onuchic JN J Chem Phys; 2008 Jan; 128(2):025101. PubMed ID: 18205476 [TBL] [Abstract][Full Text] [Related]
3. Cooperativity in two-state protein folding kinetics. Weikl TR; Palassini M; Dill KA Protein Sci; 2004 Mar; 13(3):822-9. PubMed ID: 14978313 [TBL] [Abstract][Full Text] [Related]
4. Molecular mechanisms for cooperative folding of proteins. Hao MH; Scheraga HA J Mol Biol; 1998 Apr; 277(4):973-83. PubMed ID: 9545385 [TBL] [Abstract][Full Text] [Related]
5. The effect of surface tethering on the folding of the src-SH3 protein domain. Zhuang Z; Jewett AI; Soto P; Shea JE Phys Biol; 2009 Feb; 6(1):015004. PubMed ID: 19208934 [TBL] [Abstract][Full Text] [Related]
6. Probing possible downhill folding: native contact topology likely places a significant constraint on the folding cooperativity of proteins with approximately 40 residues. Badasyan A; Liu Z; Chan HS J Mol Biol; 2008 Dec; 384(2):512-30. PubMed ID: 18823994 [TBL] [Abstract][Full Text] [Related]
7. Folding pathway dependence on energetic frustration and interaction heterogeneity for a three-dimensional hydrophobic protein model. Garcia LG; Araújo AF Proteins; 2006 Jan; 62(1):46-63. PubMed ID: 16292745 [TBL] [Abstract][Full Text] [Related]
8. Geometrical features of the protein folding mechanism are a robust property of the energy landscape: a detailed investigation of several reduced models. Oliveira LC; Schug A; Onuchic JN J Phys Chem B; 2008 May; 112(19):6131-6. PubMed ID: 18251535 [TBL] [Abstract][Full Text] [Related]
9. Folding of a SH3 domain: standard and "hydrodynamic" analyses. Kalgin IV; Karplus M; Chekmarev SF J Phys Chem B; 2009 Sep; 113(38):12759-72. PubMed ID: 19711956 [TBL] [Abstract][Full Text] [Related]
10. Roles of physical interactions in determining protein-folding mechanisms: molecular simulation of protein G and alpha spectrin SH3. Lee SY; Fujitsuka Y; Kim DH; Takada S Proteins; 2004 Apr; 55(1):128-38. PubMed ID: 14997547 [TBL] [Abstract][Full Text] [Related]
11. Reconstruction of the src-SH3 protein domain transition state ensemble using multiscale molecular dynamics simulations. Ding F; Guo W; Dokholyan NV; Shakhnovich EI; Shea JE J Mol Biol; 2005 Jul; 350(5):1035-50. PubMed ID: 15982666 [TBL] [Abstract][Full Text] [Related]
12. Robustness and generalization of structure-based models for protein folding and function. Lammert H; Schug A; Onuchic JN Proteins; 2009 Dec; 77(4):881-91. PubMed ID: 19626713 [TBL] [Abstract][Full Text] [Related]
13. Multidimensional theory of protein folding. Itoh K; Sasai M J Chem Phys; 2009 Apr; 130(14):145104. PubMed ID: 19368477 [TBL] [Abstract][Full Text] [Related]
14. Transition states for folding of circular-permuted proteins. Chen J; Wang J; Wang W Proteins; 2004 Oct; 57(1):153-71. PubMed ID: 15326601 [TBL] [Abstract][Full Text] [Related]