BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

271 related articles for article (PubMed ID: 16853155)

  • 1. Effect of metallic ions on silk formation in the Mulberry silkworm, Bombyx mori.
    Zhou L; Chen X; Shao Z; Huang Y; Knight DP
    J Phys Chem B; 2005 Sep; 109(35):16937-45. PubMed ID: 16853155
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Conformation transition kinetics of Bombyx mori silk protein.
    Chen X; Shao Z; Knight DP; Vollrath F
    Proteins; 2007 Jul; 68(1):223-31. PubMed ID: 17436322
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of pH and calcium ions on the conformational transitions in silk fibroin using 2D Raman correlation spectroscopy and 13C solid-state NMR.
    Zhou P; Xie X; Knight DP; Zong XH; Deng F; Yao WH
    Biochemistry; 2004 Sep; 43(35):11302-11. PubMed ID: 15366940
    [TBL] [Abstract][Full Text] [Related]  

  • 4. X-ray photoelectron spectroscopic and Raman analysis of silk fibroin-Cu(II) films.
    Zhou L; Chen X; Dai W; Shao Z
    Biopolymers; 2006 Jun; 82(2):144-51. PubMed ID: 16463361
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effect of shearing on formation of silk fibers from regenerated Bombyx mori silk fibroin aqueous solution.
    Xie F; Zhang H; Shao H; Hu X
    Int J Biol Macromol; 2006 May; 38(3-5):284-8. PubMed ID: 16678253
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Structure and properties of regenerated Antheraea pernyi silk fibroin in aqueous solution.
    Tao W; Li M; Zhao C
    Int J Biol Macromol; 2007 Apr; 40(5):472-8. PubMed ID: 17173967
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Effect of pH and copper(II) on the conformation transitions of silk fibroin based on EPR, NMR, and Raman spectroscopy.
    Zong XH; Zhou P; Shao ZZ; Chen SM; Chen X; Hu BW; Deng F; Yao WH
    Biochemistry; 2004 Sep; 43(38):11932-41. PubMed ID: 15379533
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Study of protein conformation and orientation in silkworm and spider silk fibers using Raman microspectroscopy.
    Rousseau ME; Lefèvre T; Beaulieu L; Asakura T; Pézolet M
    Biomacromolecules; 2004; 5(6):2247-57. PubMed ID: 15530039
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Simulation of flow in the silk gland.
    Breslauer DN; Lee LP; Muller SJ
    Biomacromolecules; 2009 Jan; 10(1):49-57. PubMed ID: 19053289
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dynamic light scattering of native silk fibroin solution extracted from different parts of the middle division of the silk gland of the Bombyx mori silkworm.
    Hossain KS; Ochi A; Ooyama E; Magoshi J; Nemoto N
    Biomacromolecules; 2003; 4(2):350-9. PubMed ID: 12625731
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Conformational transition and liquid crystalline state of regenerated silk fibroin in water.
    Li XG; Wu LY; Huang MR; Shao HL; Hu XC
    Biopolymers; 2008 Jun; 89(6):497-505. PubMed ID: 18067155
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Nano-TiO2 induced secondary structural transition of silk fibroin studied by two-dimensional Fourier-transform infrared correlation spectroscopy and Raman spectroscopy.
    Feng XX; Guo YH; Chen JY; Zhang JC
    J Biomater Sci Polym Ed; 2007; 18(11):1443-56. PubMed ID: 17961326
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural studies of Bombyx mori silk fibroin during regeneration from solutions and wet fiber spinning.
    Ha SW; Tonelli AE; Hudson SM
    Biomacromolecules; 2005; 6(3):1722-31. PubMed ID: 15877399
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Vibrational 13C-cross-polarization/magic angle spinning NMR spectroscopic and thermal characterization of poly(alanine-glycine) as model for silk I Bombyx mori fibroin.
    Monti P; Taddei P; Freddi G; Ohgo K; Asakura T
    Biopolymers; 2003; 72(5):329-38. PubMed ID: 12949823
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Investigation of structural transition of regenerated silk fibroin aqueous solution by Rheo-NMR spectroscopy.
    Ohgo K; Bagusat F; Asakura T; Scheler U
    J Am Chem Soc; 2008 Mar; 130(12):4182-6. PubMed ID: 18307348
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Copper in the silk formation process of Bombyx mori silkworm.
    Zhou L; Chen X; Shao Z; Zhou P; Knight DP; Vollrath F
    FEBS Lett; 2003 Nov; 554(3):337-41. PubMed ID: 14623090
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Non-bioengineered silk gland fibroin protein: characterization and evaluation of matrices for potential tissue engineering applications.
    Mandal BB; Kundu SC
    Biotechnol Bioeng; 2008 Aug; 100(6):1237-50. PubMed ID: 18383269
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A study on the flow stability of regenerated silk fibroin aqueous solution.
    Wang H; Zhang Y; Shao H; Hu X
    Int J Biol Macromol; 2005 Jul; 36(1-2):66-70. PubMed ID: 15916801
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization by Raman microspectroscopy of the strain-induced conformational transition in fibroin fibers from the silkworm Samia cynthia ricini.
    Rousseau ME; Beaulieu L; Lefèvre T; Paradis J; Asakura T; Pézolet M
    Biomacromolecules; 2006 Sep; 7(9):2512-21. PubMed ID: 16961312
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Morphology and structure of electrospun mats from regenerated silk fibroin aqueous solutions with adjusting pH.
    Zhu J; Shao H; Hu X
    Int J Biol Macromol; 2007 Oct; 41(4):469-74. PubMed ID: 17689606
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 14.