These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 16853370)

  • 1. The orientation parameter for energy transfer in restricted geometries including block copolymer interfaces: a Monte Carlo study.
    Yang J; Winnik MA
    J Phys Chem B; 2005 Oct; 109(39):18408-17. PubMed ID: 16853370
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The determination of the Förster distance (R0) for phenanthrene and anthracene derivatives in poly(methyl methacrylate) films.
    Roller RS; Winnik MA
    J Phys Chem B; 2005 Jun; 109(25):12261-9. PubMed ID: 16852513
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Distance and orientation dependence of excitation energy transfer: from molecular systems to metal nanoparticles.
    Saini S; Srinivas G; Bagchi B
    J Phys Chem B; 2009 Feb; 113(7):1817-32. PubMed ID: 19128043
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Determination of the Förster distance in polymer films by fluorescence decay for donor dyes with a nonexponential decay profile.
    Felorzabihi N; Froimowicz P; Haley JC; Bardajee GR; Li B; Bovero E; van Veggel FC; Winnik MA
    J Phys Chem B; 2009 Feb; 113(8):2262-72. PubMed ID: 19182945
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simulation study on the translocation of diblock copolymer A(n)B(n) through interacting nanopores.
    Sun LZ; Cao WP; Luo MB
    Phys Chem Chem Phys; 2010 Oct; 12(40):13318-22. PubMed ID: 20838694
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Accurate distance determination of nucleic acids via Förster resonance energy transfer: implications of dye linker length and rigidity.
    Sindbert S; Kalinin S; Nguyen H; Kienzler A; Clima L; Bannwarth W; Appel B; Müller S; Seidel CA
    J Am Chem Soc; 2011 Mar; 133(8):2463-80. PubMed ID: 21291253
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Origin of simultaneous donor-acceptor emission in single molecules of peryleneimide-terrylenediimide labeled polyphenylene dendrimers.
    Melnikov SM; Yeow EK; Uji-i H; Cotlet M; Müllen K; De Schryver FC; Enderlein J; Hofkens J
    J Phys Chem B; 2007 Feb; 111(4):708-19. PubMed ID: 17249814
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Controlled transition dipole alignment of energy donor and energy acceptor molecules in doped organic crystals, and the effect on intermolecular Förster energy transfer.
    Wang H; Yue B; Xie Z; Gao B; Xu Y; Liu L; Sun H; Ma Y
    Phys Chem Chem Phys; 2013 Mar; 15(10):3527-34. PubMed ID: 23376957
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The effect of Brownian motion of fluorescent probes on measuring nanoscale distances by Förster resonance energy transfer.
    Badali D; Gradinaru CC
    J Chem Phys; 2011 Jun; 134(22):225102. PubMed ID: 21682537
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Three-dimensional orientational colocalization of individual donor--acceptor pairs.
    Hubner CG; Ksenofontov V; Nolde F; Mullen K; Basche T
    J Chem Phys; 2004 Jun; 120(23):10867-70. PubMed ID: 15268115
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Does Förster theory predict the rate of electronic energy transfer for a model dyad at low temperature?
    Curutchet C; Mennucci B; Scholes GD; Beljonne D
    J Phys Chem B; 2008 Mar; 112(12):3759-66. PubMed ID: 18318527
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Analogy in the adsorption of random copolymers and homopolymers at solid-liquid interface: a Monte Carlo simulation study.
    Sun L; Peng C; Liu H; Hu Y; Jiang J
    J Chem Phys; 2007 Mar; 126(9):094905. PubMed ID: 17362125
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Energy migration study of random immobile anthracene derivatives by time-resolved fluorescence anisotropy decays.
    Yang J; Roller RS; Winnik MA
    J Phys Chem B; 2006 Jun; 110(24):11739-45. PubMed ID: 16800471
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Computing free energies of interfaces in self-assembling systems.
    Müller M; Daoulas KCh; Norizoe Y
    Phys Chem Chem Phys; 2009 Mar; 11(12):2087-97. PubMed ID: 19280019
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Simultaneous binding of minor groove binder and intercalator to dodecamer DNA: importance of relative orientation of donor and acceptor in FRET.
    Banerjee D; Pal SK
    J Phys Chem B; 2007 May; 111(19):5047-52. PubMed ID: 17455977
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Dynamic Monte Carlo simulation of aggregation of nanoparticles in the presence of diblock copolymer.
    Huang J; Sun D
    J Colloid Interface Sci; 2007 Nov; 315(1):355-62. PubMed ID: 17692325
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Donor-acceptor systems: energy transfer from CdS quantum dots/rods to Nile Red dye.
    Sadhu S; Patra A
    Chemphyschem; 2008 Oct; 9(14):2052-8. PubMed ID: 18756556
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Photophysics of backbone fluorescent DNA modifications: reducing uncertainties in FRET.
    Ranjit S; Gurunathan K; Levitus M
    J Phys Chem B; 2009 Jun; 113(22):7861-6. PubMed ID: 19473039
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Block copolymers confined in a nanopore: pathfinding in a curving and frustrating flatland.
    Sevink GJ; Zvelindovsky AV
    J Chem Phys; 2008 Feb; 128(8):084901. PubMed ID: 18315081
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Experimental and theoretical study of triplet energy transfer in rigid polymer films.
    Merkel PB; Dinnocenzo JP
    J Phys Chem A; 2008 Oct; 112(43):10790-800. PubMed ID: 18834093
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.