BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

231 related articles for article (PubMed ID: 16853496)

  • 1. Interaction of evaporated nickel nanoparticles with highly oriented pyrolytic graphite: Back-bonding to surface defects, as studied by X-ray photoelectron spectroscopy.
    Yang DQ; Sacher E
    J Phys Chem B; 2005 Oct; 109(41):19329-34. PubMed ID: 16853496
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Electronic and geometric properties of Au nanoparticles on Highly Ordered Pyrolytic Graphite (HOPG) studied using X-ray Photoelectron Spectroscopy (XPS) and Scanning Tunneling Microscopy (STM).
    Lopez-Salido I; Lim DC; Dietsche R; Bertram N; Kim YD
    J Phys Chem B; 2006 Jan; 110(3):1128-36. PubMed ID: 16471654
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evidence of the interaction of evaporated Pt nanoparticles with variously treated surfaces of highly oriented pyrolytic graphite.
    Yang DQ; Zhang GX; Sacher E; José-Yacaman M; Elizondo N
    J Phys Chem B; 2006 Apr; 110(16):8348-56. PubMed ID: 16623519
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chemical and morphological characterizations of CoNi alloy nanoparticles formed by co-evaporation onto highly oriented pyrolytic graphite.
    Zhang G; Sun S; Bostetter M; Poulin S; Sacher E
    J Colloid Interface Sci; 2010 Oct; 350(1):16-21. PubMed ID: 20650466
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Carbon 1s X-ray photoemission line shape analysis of highly oriented pyrolytic graphite: the influence of structural damage on peak asymmetry.
    Yang DQ; Sacher E
    Langmuir; 2006 Jan; 22(3):860-2. PubMed ID: 16430237
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Size-dependent surface reactions of Ag nanoparticles supported on highly oriented pyrolytic graphite.
    Zhang H; Fu Q; Yao Y; Zhang Z; Ma T; Tan D; Bao X
    Langmuir; 2008 Oct; 24(19):10874-8. PubMed ID: 18729334
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Palladium nanostructures and nanoparticles from molecular precursors on highly ordered pyrolytic graphite.
    Díaz-Ayala R; Fachini ER; Raptis R; Cabrera CR
    Langmuir; 2006 Nov; 22(24):10185-95. PubMed ID: 17107020
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Nanobubble-assisted formation of carbon nanostructures on basal plane highly ordered pyrolytic graphite exposed to aqueous media.
    Janda P; Frank O; Bastl Z; Klementová M; Tarábková H; Kavan L
    Nanotechnology; 2010 Mar; 21(9):095707. PubMed ID: 20139490
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparative X-ray photoelectron spectroscopic study on the desulfurization of thiophene by Raney nickel and rapidly quenched skeletal nickel.
    Hu H; Qiao M; Xie F; Fan K; Lei H; Tan D; Bao X; Lin H; Zong B; Zhang X
    J Phys Chem B; 2005 Mar; 109(11):5186-92. PubMed ID: 16863183
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Thermal reduction of Pd molecular cluster precursors at highly ordered pyrolytic graphite surfaces.
    Díaz-Ayala R; Arroyo L; Raptis R; Cabrera CR
    Langmuir; 2004 Sep; 20(19):8329-35. PubMed ID: 15350110
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Photodeposition of Ag or Pt onto TiO2 nanoparticles decorated on step edges of HOPG.
    Taing J; Cheng MH; Hemminger JC
    ACS Nano; 2011 Aug; 5(8):6325-33. PubMed ID: 21790177
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Low-temperature growth of bismuth thin films with (111) facet on highly oriented pyrolytic graphite.
    Song F; Wells JW; Jiang Z; Saxegaard M; Wahlström E
    ACS Appl Mater Interfaces; 2015 Apr; 7(16):8525-32. PubMed ID: 25849866
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Molecular imaging of single cellulose chains aligned on a highly oriented pyrolytic graphite surface.
    Yokota S; Ueno T; Kitaoka T; Wariishi H
    Carbohydr Res; 2007 Dec; 342(17):2593-8. PubMed ID: 17889844
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Iron nanoparticles: the core-shell structure and unique properties for Ni(II) sequestration.
    Li XQ; Zhang WX
    Langmuir; 2006 May; 22(10):4638-42. PubMed ID: 16649775
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Long-range segregation phenomena in shape-selected bimetallic nanoparticles: chemical state effects.
    Ahmadi M; Behafarid F; Cui C; Strasser P; Cuenya BR
    ACS Nano; 2013 Oct; 7(10):9195-204. PubMed ID: 24015721
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Bismuth telluride (Bi2Te3) nanowires: synthesis by cyclic electrodeposition/stripping, thinning by electrooxidation, and electrical power generation.
    Menke EJ; Brown MA; Li Q; Hemminger JC; Penner RM
    Langmuir; 2006 Dec; 22(25):10564-74. PubMed ID: 17129031
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Multiscale imaging and tip-scratch studies reveal insight into the plasma oxidation of graphite.
    Paredes JI; Martínez-Alonso A; Tascón JM
    Langmuir; 2007 Aug; 23(17):8932-43. PubMed ID: 17628085
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Physical vapor deposition of one-dimensional nanoparticle arrays on graphite: seeding the electrodeposition of gold nanowires.
    Cross CE; Hemminger JC; Penner RM
    Langmuir; 2007 Sep; 23(20):10372-9. PubMed ID: 17715955
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Reflection absorption infrared spectroscopy and temperature programmed desorption investigations of the interaction of methanol with a graphite surface.
    Bolina AS; Wolff AJ; Brown WA
    J Chem Phys; 2005 Jan; 122(4):44713. PubMed ID: 15740289
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Electronic structure studies of Ni-X (X: B, S, P) alloys using x-ray photoelectron spectroscopy, x-ray induced Auger electron spectroscopy and density functional theory calculations.
    Diplas S; Løvvik OM
    J Phys Condens Matter; 2009 Jun; 21(24):245503. PubMed ID: 21693949
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.