These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
230 related articles for article (PubMed ID: 16853496)
1. Interaction of evaporated nickel nanoparticles with highly oriented pyrolytic graphite: Back-bonding to surface defects, as studied by X-ray photoelectron spectroscopy. Yang DQ; Sacher E J Phys Chem B; 2005 Oct; 109(41):19329-34. PubMed ID: 16853496 [TBL] [Abstract][Full Text] [Related]
2. Electronic and geometric properties of Au nanoparticles on Highly Ordered Pyrolytic Graphite (HOPG) studied using X-ray Photoelectron Spectroscopy (XPS) and Scanning Tunneling Microscopy (STM). Lopez-Salido I; Lim DC; Dietsche R; Bertram N; Kim YD J Phys Chem B; 2006 Jan; 110(3):1128-36. PubMed ID: 16471654 [TBL] [Abstract][Full Text] [Related]
3. Evidence of the interaction of evaporated Pt nanoparticles with variously treated surfaces of highly oriented pyrolytic graphite. Yang DQ; Zhang GX; Sacher E; José-Yacaman M; Elizondo N J Phys Chem B; 2006 Apr; 110(16):8348-56. PubMed ID: 16623519 [TBL] [Abstract][Full Text] [Related]
4. Chemical and morphological characterizations of CoNi alloy nanoparticles formed by co-evaporation onto highly oriented pyrolytic graphite. Zhang G; Sun S; Bostetter M; Poulin S; Sacher E J Colloid Interface Sci; 2010 Oct; 350(1):16-21. PubMed ID: 20650466 [TBL] [Abstract][Full Text] [Related]
5. Carbon 1s X-ray photoemission line shape analysis of highly oriented pyrolytic graphite: the influence of structural damage on peak asymmetry. Yang DQ; Sacher E Langmuir; 2006 Jan; 22(3):860-2. PubMed ID: 16430237 [TBL] [Abstract][Full Text] [Related]
6. Size-dependent surface reactions of Ag nanoparticles supported on highly oriented pyrolytic graphite. Zhang H; Fu Q; Yao Y; Zhang Z; Ma T; Tan D; Bao X Langmuir; 2008 Oct; 24(19):10874-8. PubMed ID: 18729334 [TBL] [Abstract][Full Text] [Related]
8. Nanobubble-assisted formation of carbon nanostructures on basal plane highly ordered pyrolytic graphite exposed to aqueous media. Janda P; Frank O; Bastl Z; Klementová M; Tarábková H; Kavan L Nanotechnology; 2010 Mar; 21(9):095707. PubMed ID: 20139490 [TBL] [Abstract][Full Text] [Related]
9. Comparative X-ray photoelectron spectroscopic study on the desulfurization of thiophene by Raney nickel and rapidly quenched skeletal nickel. Hu H; Qiao M; Xie F; Fan K; Lei H; Tan D; Bao X; Lin H; Zong B; Zhang X J Phys Chem B; 2005 Mar; 109(11):5186-92. PubMed ID: 16863183 [TBL] [Abstract][Full Text] [Related]
11. Photodeposition of Ag or Pt onto TiO2 nanoparticles decorated on step edges of HOPG. Taing J; Cheng MH; Hemminger JC ACS Nano; 2011 Aug; 5(8):6325-33. PubMed ID: 21790177 [TBL] [Abstract][Full Text] [Related]
12. Low-temperature growth of bismuth thin films with (111) facet on highly oriented pyrolytic graphite. Song F; Wells JW; Jiang Z; Saxegaard M; Wahlström E ACS Appl Mater Interfaces; 2015 Apr; 7(16):8525-32. PubMed ID: 25849866 [TBL] [Abstract][Full Text] [Related]
13. Molecular imaging of single cellulose chains aligned on a highly oriented pyrolytic graphite surface. Yokota S; Ueno T; Kitaoka T; Wariishi H Carbohydr Res; 2007 Dec; 342(17):2593-8. PubMed ID: 17889844 [TBL] [Abstract][Full Text] [Related]
14. Iron nanoparticles: the core-shell structure and unique properties for Ni(II) sequestration. Li XQ; Zhang WX Langmuir; 2006 May; 22(10):4638-42. PubMed ID: 16649775 [TBL] [Abstract][Full Text] [Related]
15. Long-range segregation phenomena in shape-selected bimetallic nanoparticles: chemical state effects. Ahmadi M; Behafarid F; Cui C; Strasser P; Cuenya BR ACS Nano; 2013 Oct; 7(10):9195-204. PubMed ID: 24015721 [TBL] [Abstract][Full Text] [Related]
16. Bismuth telluride (Bi2Te3) nanowires: synthesis by cyclic electrodeposition/stripping, thinning by electrooxidation, and electrical power generation. Menke EJ; Brown MA; Li Q; Hemminger JC; Penner RM Langmuir; 2006 Dec; 22(25):10564-74. PubMed ID: 17129031 [TBL] [Abstract][Full Text] [Related]
17. Multiscale imaging and tip-scratch studies reveal insight into the plasma oxidation of graphite. Paredes JI; Martínez-Alonso A; Tascón JM Langmuir; 2007 Aug; 23(17):8932-43. PubMed ID: 17628085 [TBL] [Abstract][Full Text] [Related]
18. Physical vapor deposition of one-dimensional nanoparticle arrays on graphite: seeding the electrodeposition of gold nanowires. Cross CE; Hemminger JC; Penner RM Langmuir; 2007 Sep; 23(20):10372-9. PubMed ID: 17715955 [TBL] [Abstract][Full Text] [Related]
19. Reflection absorption infrared spectroscopy and temperature programmed desorption investigations of the interaction of methanol with a graphite surface. Bolina AS; Wolff AJ; Brown WA J Chem Phys; 2005 Jan; 122(4):44713. PubMed ID: 15740289 [TBL] [Abstract][Full Text] [Related]
20. Electronic structure studies of Ni-X (X: B, S, P) alloys using x-ray photoelectron spectroscopy, x-ray induced Auger electron spectroscopy and density functional theory calculations. Diplas S; Løvvik OM J Phys Condens Matter; 2009 Jun; 21(24):245503. PubMed ID: 21693949 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]